• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A realistic phantom of the human head for PET-MRI

Harries, Johanna, Jochimsen, Thies H., Scholz, Thomas, Schlender, Tina, Barthel, Henryk, Sabri, Osama, Sattler, Bernhard 08 February 2022 (has links)
Background: The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET-MRI) is a unique hybrid imaging modality mainly used in oncology and neurology. The MRI-based attenuation correction (MRAC) is crucial for correct quantification of PET data. A suitable phantom to validate quantitative results in PET-MRI is currently missing. In particular, the correction of attenuation due to bone is usually not verified by commonly available phantoms. The aim of this work was, thus, the development of such a phantom and to explore whether such a phantom might be used to validate MRACs. Method: Various materials were investigated for their attenuation and MR properties. For the substitution of bone, water-saturated gypsum plaster was used. The attenuation of 511 keV annihilation photons was regulated by addition of iodine. Adipose tissue was imitated by silicone and brain tissue by agarose gel, respectively. The practicability with respect to the comparison of MRACs was checked as follows: A small flask inserted into the phantom and a large spherical phantom (serving as a reference with negligible error in MRAC) were filled with the very same activity concentration. The activity concentration was measured and compared using clinical protocols on PET-MRI and different built-in and offline MRACs. The same measurements were carried out using PET-CT for comparison. Results: The phantom imitates the human head in sufficient detail. All tissue types including bone were detected as such so that the phantom-based comparison of the quantification accuracy of PET-MRI was possible. Quantitatively, the activity concentration in the brain, which was determined using different MRACs, showed a deviation of about 5% on average and a maximum deviation of 11% compared to the spherical phantom. For PET-CT, the deviation was 5%. Conclusions: The comparatively small error in quantification indicates that it is possible to construct a brain PET-MRI phantom that leads to MR-based attenuation-corrected images with reasonable accuracy.
2

Microwave phantoms for Craniotomy and bone defect monitoring

Jacob, Velander January 2015 (has links)
To facilitate examination for osteogenesis and follow up after craniotomy similar head models called phantoms are made. The head phantom should emulate the tissues from a real head. This requires that the realistic head phantom have the same electrical properties as relative permittivity (dielectric constant) and conductivity. Both must be validated and matched for right frequency spectrum. Validation measurements are performed by a coaxial slim probe connected to an Agilent Technologies E8364B network analyzer. The range of frequency measured is from 1 to 50 GHz, but matching will only be processed for 1 to 10 GHz. The resonance frequency for the antenna or sensor, which later will be used, is 2.4 GHz. The end results of the head phantom consists of three different tissues or layers (skin, bone and brain). Cavities will be created in the bone and will act as different defects or stages of re-growing bone. Phantom cube is done for examining the influence of implant in bone. Insertions of cube samples are made to emulate intermediates between implant and bone. Keywords: agar, BMP, body morphogenetic protein, bone implant, brain phantom, craniosynostosis, craniotomy, cube phantom, phantom, re-growing bone, skin phantom, skull phantom, tissue.
3

Desenvolvimento de phantom antropom?rfico cerebral para simula??o de atividade ICTAL e imterictal utilizando a metodologia pet com fl?or-18

Silbermann, Karina Nique Franz 27 August 2018 (has links)
Submitted by PPG Medicina e Ci?ncias da Sa?de (medicina-pg@pucrs.br) on 2018-12-11T14:10:12Z No. of bitstreams: 1 KARINA NIQUE FRANZ SILBERMANN.pdf: 24305952 bytes, checksum: 2707c9d644d7f53ccbd72659a1adda31 (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-12-13T18:40:06Z (GMT) No. of bitstreams: 1 KARINA NIQUE FRANZ SILBERMANN.pdf: 24305952 bytes, checksum: 2707c9d644d7f53ccbd72659a1adda31 (MD5) / Made available in DSpace on 2018-12-13T19:18:32Z (GMT). No. of bitstreams: 1 KARINA NIQUE FRANZ SILBERMANN.pdf: 24305952 bytes, checksum: 2707c9d644d7f53ccbd72659a1adda31 (MD5) Previous issue date: 2018-08-27 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / The equipment and processes used in nuclear medicine must be included in a quality control program that includes a series of tests and calibrations following the frequency established by current standards, which are based on international institutions protocols. The capability of anthropomorphic simulators mimic realistic situations are widely appointed to gauge essential data that guarantee the quality in medical generating processes. The purpose of this study was developing a cerebral anthropomorphic phantom for image simulation of ictal activity in nuclear medicine with 18F, PET-CT. It was made in an industrial printer with SLS (Selective Laser Sintering) technology, 4mm thick, using nylon 12. The model was segmented from a magnetic resonance study of a 40-year-old female adult. Two 40 nm thickness metal (Ag) electrodes were inserted in the right frontal lobe region to simulate ictal activity. For the images acquisition, the phantom was filled with distillated water and the 18F radioisotope. The images were acquired in PET-CT equipment with specific protocol for tomographic and dynamic cerebral studies. Images from the simulator without the insertion of the electrodes were acquired as pattern (basal), also were acquired images from the simulator with the electrodes and without electric field application, and the simulator with electric field application. The images were compared through SUV maximum values and uptake index. The non-parametric Wilcoxon-Mann-Whitney test was used as statistic approach, considering the three image conditions as independent groups. There was significant difference amongst the groups, being p < 0,001 when compared the average SUV maximum values by slices in the situations: basal x with electric field, and basal x without electric field, p = 0,129 when compared situations with electric field x without electric field, suggesting that this difference is not significant. All the groups presented significant differences for the uptake indexes obtained, being p < 0,001 in the situations basal x with electric field and basal x without electric field. The TAC (time-activity-curve) curves were obtained in A PET-CT dynamic protocol to demonstrate the 18F uptake in time, in the conditions with electric field and without electric field. The images were subtracted through SISCOM, using the basal condition as reference. The values found for p (SUV and uptake index) are compatible. The SISCOM histograms demonstrate differences for the three image comparisons. Although there are gradual raise of 18F uptake in time obtained in TAC evaluation for both with and without electric field conditions, the highest uptake visualized was when the electric field is applied. The anthropomorphic phantom developed is capable of simulating compatible zones with ictal activity, however the material used as resin in the electrodes must be modified so that the product may be commercialized in the future. / Os equipamentos e processos utilizados em medicina nuclear devem estar inclu?dos em um programa de controle de qualidade, o que inclui uma s?rie de testes e calibra??es com periodicidade estabelecida pelas normas vigentes, baseadas nos protocolos de institui??es internacionais. Os simuladores antropom?rficos, pela sua capacidade de mimetizar situa??es real?sticas, s?o amplamente empregados para aferir dados essenciais que garantam a qualidade nos processos geradores de imagens m?dicas. O objetivo deste trabalho foi desenvolver um phantom antropom?rfico cerebral para simula??o de imagens de atividade ictal em medicina nuclear, utilizando metodologia PET com Fl?or-18 (18F). O phantom foi confeccionado em impressora industrial com tecnologia SLS (Selective Laser Sintering), de espessura de 4 mm, utilizando como mat?ria prima nylon 12. O modelo foi segmentado a partir de um estudo de resson?ncia magn?tica de um adulto normal, do sexo feminino, com 40 anos. Para a simula??o de atividade ictal foram inseridos, na regi?o correspondente ao lobo frontal direito, dois eletrodos met?licos constitu?dos de filme fino de 40 nm de prata (Ag). Para a aquisi??o das imagens, o modelo foi preenchido com ?gua destilada e com o radiois?topo 18F. As imagens foram adquiridas em equipamento de PET-CT com protocolo espec?fico para estudos cerebrais tomogr?fico e din?mico. Foram adquiridas imagens: (1) simulador sem a inser??o dos eletrodos (padr?o/basal), (2) simulador com eletrodos sem aplica??o de campo el?trico e (3) simulador com os eletrodos e aplica??o de campo el?trico. As imagens foram comparadas entre si atrav?s dos valores de SUV m?ximo e do ?ndice de capta??o. A abordagem estat?stica utilizada considerou as tr?s condi??es de imagens como grupos independentes e o teste n?o param?trico de Wilcoxon-Mann-Whitney foi aplicado. Houve diferen?a significativa entre os grupos, sendo o valor de p < 0,001 quando comparados os valores de m?dia de SUV m?ximo por corte nas situa??es basal x sem campo el?trico e basal x com campo el?trico. Na compara??o sem campo el?trico x com campo el?trico, o valor de p = 0,129 indica que a diferen?a entre os grupos n?o ? significativa. Quando avaliado o ?ndice de capta??o entre os grupos, todas as condi??es apresentaram diferen?a significativa, sendo p < 0,001 para os grupos basal x sem campo el?trico e basal x com campo el?trico, e p = 0,0123 na compara??o sem campo el?trico x com campo el?trico. As curvas TAC (time-activity-curve) foram adquiridas para demonstrar a capta??o de 18F no tempo, nas condi??es com campo el?trico e sem campo el?trico, em estudo din?mico de PET-CT. As imagens foram subtra?das atrav?s da metodologia SISCOM, utilizando a condi??o basal como refer?ncia. Os valores encontrados para p, tanto para SUV como para ?ndice de capta??o, s?o compat?veis com os achados visualizados nas imagens obtidas. Os histogramas gerados com a metodologia SISCOM demonstram que h? diferen?as entre as tr?s condi??es de imagem. As curvas TAC tra?adas correspondem ao aumento gradativo da concentra??o 18F no tempo, embora exista este aumento nas condi??es sem campo e com campo, obtivemos a maior concentra??o quando o sistema est? sob efeito do campo el?trico. O phantom antropom?rfico desenvolvido ? capaz de simular zonas an?logas ?s de imagens de atividade ictal, por?m o material utilizado como resina nos eletrodos deve ser modificado para que o produto possa ser comercializado futuramente.

Page generated in 0.0667 seconds