A methodology of designing a novel sliding surface for a class of large-scale systems with matched and mismatched perturbations is proposed in this thesis. The main idea is that some adaptive mechanisms are embedded both in the sliding surface function and in the controllers, so that not only the mismatched perturbations are suppressed during the sliding mode, but also the information of upper bound of perturbation is not required except the upper bound of perturbation from input channel. The proposed controller of each subsystem contains two parts. The first part is measurable feedback signals, and the second part is an adaptive control mechanism, which is used for overcoming the perturbation of each subsystem as well as interconnections among subsystems. The dynamics of the controlled system can be driven into the sliding surface in a finite time, and the property of asymptotical stability of each subsystem is guaranteed. Two numerical examples are given to demonstrate the feasibility of the proposed methodology.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0801105-150821 |
Date | 01 August 2005 |
Creators | Chang, Jen-Chen |
Contributors | Yuan-Liang Hsu, Chih-Chiang Cheng, Chiang-Cheng Chiang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0801105-150821 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0014 seconds