Les cristaux liquides (CL) sont des matériaux qui associent les propriétés de fluidité et de biréfringence. Leurs propriétés correspondent donc à un subtil mélange entre celles des liquides et celles des solides cristallins. Ces matériaux sont à l’origine de technologies aujourd’hui très largement répandues : il est presque assuré que celui qui lit ces lignes ait au minimum un appareil basé sur les CL à portée de vue. C’est d’ailleurs sans compter le fait que les savons et de nombreuses cellules biologiques du corps humain contiennent des CL. Pourtant, il y a un peu plus de cent ans, il s’agissait encore d’un nouvel état de la matière. D’ailleurs, le terme CL est extrêmement général et il existe en réalité plusieurs dizaines d’états CL différents, caractérisés par des arrangements moléculaires plus ou moins ordonnés. Certains de ces arrangements sont organisés en couches : ce sont les phases smectiques. Une application récente des CL concerne l’optique non-linéaire (ONL), en particulier les effets de deuxième ordre qui permettent le doublage de fréquence. Les CL smectiques C (SmC) sont d’excellents candidats pour cette technologie, car leur structure, et donc leur réponse ONL, peut être ajustée.
Des théories de la phase SmC existent. Bien qu’elles soient utiles pour partiellement légitimer l’utilisation de facteurs empiriques lors de la conception de molécules potentiellement CL, ces modèles sont imparfaits. La synthèse suivie de tests expérimentaux sont nécessaires pour s’assurer que la phase SmC est présente dans le polymorphisme expérimental. Les molécules utilisées dans cette thèse ont été conçues en utilisant de telles règles. Toutefois, seules certaines d’entre elles présentent effectivement la phase SmC. Cette part d’empirisme, qui se traduit par le fait qu’il est impossible d’affirmer hors de tout doute, qu’une nouvelle molécule exhibera la phase SmC, est la preuve que celle-ci est incomprise. Puisqu’il limiterait le recours à une procédure par essai-erreur, un outil prédictif serait un atout majeur tant sur le plan fondamental, que sur les plans économique et du développement durable. Pour atteindre cet objectif, des modèles plus précis que les théories actuelles sont donc nécessaires.
En fait, un changement subtil dans la structure d'une molécule CL peut avoir un impact majeur sur son polymorphisme CL expérimental. Par exemple, il arrive qu’une seule molécule parmi deux isomères structuraux, présente cette phase. En général, des modèles de simulation où les atomes sont regroupés à l’intérieur de billes statistiques, sont utilisés. De tels modèles sont en effet plus efficaces pour étudier les phénomènes à longue portée mis en jeu dans les arrangements CL. Toutefois, parce que les détails atomistiques ont un si grand impact, la simulation atomistique est, par définition, plus appropriée pour étudier la relation structure-propriété. Les modèles atomistiques sont toutefois contraints d’utiliser un nombre plus restreint de molécules et des temps de simulation plus courts. Une approche adaptée doit dans ce cas être utilisée.
L’objet de cette thèse est de montrer que la simulation atomistique par dynamique moléculaire (DM) est un outil capable de saisir les subtilités qui régissent la formation éventuelle de la phase SmC. Un modèle de simulation par DM, où chaque atome est représenté par une particule distincte, est utilisé pour étudier des familles de molécules calamitiques, dont certains membres présentent la phase SmC. La DM utilise un ensemble d’équations et de paramètres, appelé champ de forces, pour gérer les interactions entre les particules. À l'intérieur des familles étudiées, certaines molécules sont des isomères structuraux qui utilisent strictement les mêmes paramètres de champ de forces. Pour de telles molécules, il est possible de directement lier le comportement obtenu par simulation au changement structural qui induit la modification du polymorphisme expérimental. La réorganisation des systèmes simulés, initialement SmC, est analysée avec l’augmentation de la température. Cette modification de l'auto-assemblage est capturée par les valeurs des énergies non-liantes : les interactions de van der Waals (vdW) et coulombienne.
Le lien entre la signature énergétique et le polymorphisme CL expérimental a tout d’abord été étudié, grâce à l'utilisation combinée de la DM et de l’expérience. Il conduit à la proposition d’un modèle qualitatif expliquant l’origine de la stabilité thermique de la phase SmC. Ce modèle s’appuie sur les valeurs de l’énergie d’interaction coulombienne et les traduit en terme de distances entre les couches smectiques et entre les molécules d’une même couche. L’étude des huit molécules montre qu’une énergie d’interaction coulombienne à longue portée, c’est-à-dire entre les couches smectiques, plus négative, est concomitante avec une stabilité thermique accrue de la phase SmC. Cependant, cette stabilité thermique peut être réduite en fonction de l’interaction coulombienne à courte portée, c’est-à-dire entre les molécules dans une même couche. Une interaction trop forte conduit préférentiellement à la présence du cristal au détriment de la mésophase.
Dans un second temps, une approche par DM améliorée a été utilisée. Elle consiste à appliquer le critère d’équilibre mécanique aux cellules de simulation initiales afin d’améliorer la qualité du point de départ des DM. Avec un tel modèle, la géométrie des arrangements simulés a pu être précisément analysée. Dans les courbes de l’énergie simulée, des transitions nettes apparaissent en fonction de la température. À basse température, chaque potentiel non-liant laisse apparaître des températures de transition qui lui sont propres. En revanche, la plus haute température de transition est identique pour toutes ces interactions. Analyser la géométrie des systèmes simulés révèle que cette transition à haute température correspond en fait à la transition vers le liquide isotrope. Avec ce nouveau modèle, l’arrangement initial SmC est conservé aux basses températures. Cette étude met également en valeur la synergie entre l’organisation SmC et le potentiel d’interaction de vdW à longue portée, qui est une fonction du volume du système.
L’approche défendue dans cette thèse, qui favorise la finesse de la description de la matière plutôt que la représentation de vastes échelles de temps et d’espace, permet de dévoiler le lien profond entre la structure atomique, l'existence même et le comportement de la phase SmC.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/5868 |
Date | January 2014 |
Creators | Porzio, François |
Contributors | Soldera, Armand |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French |
Detected Language | French |
Type | Thèse |
Rights | © François Porzio, Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada, Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada, http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ |
Page generated in 0.0029 seconds