A previsibilidade de indicadores de qualidade de vida pode contribuir na projeção de variáveis dependentes, auxiliar em tomadas de decisões para sustentar ou não políticas públicas e justificar o cenário vivido pelos países e o mundo. Objetivo: Prever o Índice de Desenvolvimento Humano (IDH) e a expectativa de vida (EV) nos países latino-americanos no período de 2015 a 2020, utilizando técnicas de Mineração de Dados. Metodologia: Foram percorridas as etapas do processo Descoberta de Conhecimento em Base Dados (DCBD). Durante a etapa de DCBD de Mineração de Dados, foi avaliado o desempenho de diferentes algoritmos com paradigma de aprendizado baseados em funções. A partir do algoritmo com melhor desempenho, foram desenvolvidos 748 modelos de previsão univariados e dois multivariados para previsão do IDH de 187 países do mundo e seus resultados, comparados com os últimos relatórios do United Nations Development Programme (UNDP), para definição do modelo mais eficiente. Os resultados desses testes de previsões ainda foram comparados com 44 modelos univariados Autoregressive Integrated Moving Average (ARIMA). A partir da definição do melhor algoritmo de Mineração de Dados e modelo, fez-se a previsão do IDH e da EV para os países da America Latina para o período de 2015 a 2020. Resultados: O algoritmo SMOReg e os modelos multivariados apresentaram melhor desempenho nos testes desenvolvidos durante o experimento. As médias de crescimento do IDH e EV previstas para os países latino-americanos tendem a aumentar no período analisado, respectivamente, 4,99±3,90 % e 2,47±0,09 anos. Conclusão: Experiências multivariadas possibilitam maior aprendizagem dos algoritmos, aumentando sua precisão. As técnicas de Mineração de Dados apresentaram melhor qualidade nas previsões em relação à técnica mais popular, ARIMA. As previsões sugerem média de crescimento do IDH e EV dos países latino-americanos maiores que a média mundial. / The predictability of quality of life indicators can contribute to the projection of dependent variables, help decision-making processes to support public policies and justify the scenario experienced by the countries and the world. Aim: This study aimed to predict the Human Development Index (HDI) and life expectancy (LE) in Latin American countries in the period of 2015–2020 using data mining techniques. Methodology: The study followed the steps of Knowledge Discovery in Database (KDD) processes. During the data mining KDD step, the performance of different algorithms with function-based learning paradigms was analyzed. From the algorithm with the best performance, 748 prediction models of univariate and two multivariate were developed to predict the HDI of 187 countries and their results were compared with the last reports from the United Nations Development Program (UNDP) in order to define the most efficient model. The results of these prediction tests were compared with 44 univariate Autoregressive Integrated Moving Average (ARIMA) models. From the definition of the best algorithm of data mining and model, the prediction of HDI and LE for Latin American countries from 2015 and 2020 was done. Results: The SMOReg algorithm and the multivariate models presented the best performance in the tests during the experiment. The average growth in HDI and LE predicted for Latin American countries tend to increase in the period analyzed, 4.99±3.90 % and 2.47±0.09 years, respectively. Conclusion: Multivariate experiences allow better learning of algorithms, increasing their prediction. Mining data techniques present better quality in the predictions compared to Autoregressive Integrated Moving Average (ARIMA), which is the most popular technique. The predictions suggest an average growth in HDI and LE in Latin American countries compared to the world average.
Identifer | oai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:RI_UTFPR:oai:repositorio.utfpr.edu.br:1/2325 |
Date | 22 December 2016 |
Creators | Santos, Celso Bilynkievycz dos |
Contributors | Pilatti, Luiz Alberto, Pedroso, Bruno, Guimarães, Alaine Margarete, Carvalho, Deborah Ribeiro, Xavier, Antonio Augusto de Paula, Ishikawa, Gerson |
Publisher | Universidade Tecnológica Federal do Paraná, Ponta Grossa, Programa de Pós-Graduação em Engenharia de Produção, UTFPR, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0106 seconds