Return to search

Techniques for Enhancing Reliability in VLSI Circuits

Reliability is an important issue in very large scale integration(VLSI) circuits. In the absence of a
focus on reliability in the design process, a circuit's functionality can be compromised. Since chips are fabricated in bulk, if reliability issues are diagnosed during the
manufacturing of the design, the faulty chips must be tossed, which reduces product yield and
increases cost. Being aware of this situation, chip designers attempt to resolve as many issues dealing with
reliability on the front-end of the design phase (architecture or system-level
modeling) to minimize the cost of errors in the design which increases as the design phase matures. Chip designers have been known to allocate a large amount of resources to reliability of a chip to maintain confidence in their product
as well as to reduce the cost due to errors found in the design.
The reliability of a design is often degraded by various causes ranging from soft errors,
electro-migration, hot carrier injection, negative bias temperature instability (NBTI), crosstalk,
power supply noise and variations in the physical design.
Given the continuing scaling down of circuit designs achievable by the advancement in technology,
the issues pertaining to reliability
have a greater impact within
the design. Given this problem along with the demand for high-performance designs, chip designers are
faced with objective to design reliable circuits, that are high performance and energy-efficient. This is especially important given the huge growth in mobile battery-operated electronic devices in
the market. In prior research, there has been significant contributions to increasing the reliability of VLSI
designs, however such techniques are often computationally expensive or power
intensive. In this dissertation, we develop a set of new techniques to generate reliable designs
by minimizing soft error, peak power and variation effects. Several techniques at the architectural level to detect soft errors with minimal performance
overhead, that make use of data, information, temporal and
spatial redundancy are proposed. The techniques are designed in such a way that much of their latency overhead
can be hidden by the latency of other functional operations. It is shown that the proposed methodologies can be implemented with negligible or minimal performance overhead
hidden by critical path operations in the datapath. In designs with large peak power values, high current spikes cause noise within the power supply creating timing issues in the circuit which
affect its functionality. A path clustering algorithm is proposed which attempts to normalize the current
draw in the circuit over the circuit's clock period by delaying the start times of certain paths.
By reducing the number of paths starting at a time instance, we reduce the amount of current drawn
from the power supply is reduced. Experimental results indicate a reduction of up to 72\% in peak power values when tested on the ISCAS '85 and
OpenCores benchmarks. Variations in VLSI designs come from process, voltage supply, and Temperature (PVT). These
variations in the design cause non-ideal behavior at random internal nodes which impacts
the timing of the design. A variation aware circuit level design methodology is presented in this dissertation in which the
architecture dynamically stretches the clock when the effect of an variation effects are observed
within the circuit during computations. While previous research efforts found are directed towards reducing variation effects, this technique offers an alternative approach to adapt dynamically to variation effects. The design technique is shown to increase in timing yield on ITC '99 benchmark circuits by an average of 41\% with negligible area overhead.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-4358
Date01 January 2011
CreatorsHyman Jr, Ransford Morel
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0024 seconds