Verunreinigungen von Fremdelementen können den Wirkungsgrad von Solarzellen schon im Spurenbereich beeinträchtigen. Die Kenntnis der Verunreinigungen in Si ist entscheidend für die Produkt- und Produktionskontrolle neuer Solarzellenmaterialien. In dieser Arbeit wurden Analysenmethoden mit unterschiedlichen Messverfahren unter besonderer Berücksichtigung der Ansprüche der Solarindustrie entwickelt, verbessert, charakterisiert und verglichen. Mit der Sektorfeld-Massenspektrometrie (SFMS) mit induktiv gekoppeltem Plasma (ICP) nach Matrixabtrennung konnten 22 Elemente mit Bestimmungsgrenzen bis zu 120 pg g−1, quantifiziert werden. Das neue Verfahren erlaubte die Bestimmung aller Elemente in einem Analysengang ohne Analytverlust. Dabei wurde ein bisher in der Literatur nicht beschriebener Mechanismus aufgeklärt, welcher die Retention von Bor im Matrixverdampfungsschritt ohne Zusatz von Komplexbildnern erlaubt. Mit der Glimmentladungs-(GD )MS wurden 32 Elemente bis in den sub ng g−1-Bereich bestimmt. Es gelang, relative Empfindlichkeitsfaktoren zur Quantifizierung von B, P, As, Ga, Ge und Fe zu errechnen. Methoden basierend auf der elektrothermischen Verdampfung (ETV), gekoppelt an ICP-MS und ICP-Emissionsspektroskopie (OES) sowie Gleichstrombogen-OES wurden zur Charakterisierung von metallurgischem Si-Pulver mit Gehalten im µg g−1-Bereich verwendet. Die Totalreflexion-Röntgenfluoreszenz wurde als Volumenmessmethode für die Si-Analytik eingesetzt. Komplettiert wird das Methodenspektrum durch Oberflächenanalytik von Wafern mittels Laserablation-(LA)-ICP-MS. Es wurden erstmalig für Silicium Konzepte zur quantitativen Bestimmung der Verunreinigungen auf Si-Wafern über eine Kalibrierung der LA mit eingetrockneten flüssigen Standards erarbeitet und gezeigt, dass sich das Verfahren zum Nachweis typischer metallischer Ausscheidungen eignet. Die Neutronenaktivierungsanalyse wurde als anerkannte Referenzmethode der Halbleiterindustrie zur Validierung der Methoden eingesetzt. / Element impurities can affect the efficiency of solar cells already on the trace level. The knowledge of the impurities in Si is thus crucial for the product and production control of new solar cell materials. In this work, analysis methods based on different measurement principles have been developed, improved, characterized and compared with special consideration of the requirements of the solar industry. Sector field mass spectrometry (SFMS) with inductively coupled plasma (ICP) subsequent to matrix separation has been used to determine 22 elements with limits of determination down to 120 pg g−1 on sample basis. The new, optimized procedure allowed the determination of all analytes in one sweep without analyte loss during the evaporation step. A so-far unexplained mechanism for the retention of boron without use of additional complexing agents was elucidated. Glow discharge (GD)MS was used to measure 32 elements down to the sub-ng g−1 range. Relative sensitivity factors for the quantification of B, P, As, Ga, Ge and Fe have been calculated. Methods based on electrothermal vaporization (ETV) coupled to ICP-MS and ICP emission spectroscopy (OES) as well as direct current arc OES were used for the characterization of metallurgical grade Si powder with concentrations in the µg g−1 range. Total reflection X-ray fluorescence was used as a method for bulk impurity concentration analysis. The spectrum of methods is complemented by surface analysis of silicon wafers by laser ablation (LA)-ICP-MS. New concepts for quantitative analysis of silicon surfaces by the calibration of LA with dried liquid standards were elaborated. It has been demonstrated that this method is suitable for the detection of typical metallic precipitations in silicon like copper silicide. For validation of the methods, instrumental neutron activation analysis was used as the generally accepted reference method in the semiconductor industry.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17635 |
Date | 17 June 2014 |
Creators | Balski, Matthias Michael |
Contributors | Panne, Ulrich, Linscheid, Michael W. |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät |
Source Sets | Humboldt University of Berlin |
Language | German |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0028 seconds