Return to search

Solitons magnétiques et transitions topologiques.

Dans cette thèse nous étudions théoriquement et numériquement les solitons magnétiques et leurs transitions topologiques. Dans une première partie, nous trouvons une solution en 3 dimensions appelée Point de Bloch qui vient de la minimisation de l'énergie d'échange, de l'énergie de Landau et de l'énergie dipolaire. Les oscillations autour du point de Bloch sont trouvées et quantifiées pour étudier le rôle des fluctuations quantiques dans sa stabilité.Dans une deuxième partie, nous regardons l'évolution d'un système ferromagnétique avec des textures de topologie non-triviale, couplé à des électrons itinérants qui interagissent avec la texture au moyen de leurs spins. Ce système physique est modelé avec l'équation de Landau-Lifshitz-Gilbert couplée à l'équation de Schrödinger des électrons quantiques. Des transitions topologiques sont observées et mises dans un cadre général. De la grande quantité des transitions topologiques observées, nous distinguons les différents rôles que jouent les électrons selon le régime et l'ensemble de paramètres. Les ordres de grandeur temporels et spatiales des transitions topologiques montrent l'importance des effets quantiques ainsi que des effets de discrétisation du problème. / In this thesis we study the magnetic solitons and its topological transitions, both theoretically and numerically. In the first part, we find a particular configuration of what is denominated the Bloch Point, a three-dimensional solution of the Free Energy minimization with exchange, Landau and dipolar terms. Oscillations around the Bloch point are found and quantized in order to understand the role of quantum fluctuations over its stability.In the second part, we look at the evolution of a system coupling ferromagnetic textures with nontrivial topology, with itinerant electrons. The interaction between the magnetic texture and the electrons is understood by means of spin-torque phenomena. This physical system is modeled with the equation Landau-Lifshitz-Gilbert equation coupled with Schrödinger equation for quantum electrons. Topological transitions are observed and understood in a general framework that unifies older works done in a more classical context. Among the large amount of topological transitions observed, we can distinguish the different roles played by electrons depending on parameters. The orders of magnitude of time and space in the topological transition events show the importance of quantum effects as well as the fundamental role of discretization.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4712
Date29 April 2013
CreatorsElias, Ricardo
ContributorsAix-Marseille, Verga, Alberto
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds