Return to search

Simple Chemical Routes for Changing Composition or Morphology in Metal Chalcogenide Nanomaterials

Metal chalcogenide nanomaterials are interesting due to their size dependent properties and potential use in numerous types of devices or applications. The synthetic methods of binary phase metal chalcogenide nanoparticles are well established, but finding simple ways to make even more complex nanostructures is important. To this end, two techniques were studied: the cation exchange of metal chalcogenide nanocrystals, CdE → MxEy (E = S, Se, Te; M = Pd, Pt) and the solution phase synthesis of ternary chalcogenide nanoparticles.

The effects of cation solvation and the volume change (Delta V) of reaction on the equilibrium and the morphology change in the cation-exchange reactions of CdE → MxEy were investigated. A two-phase solvent environment was particularly efficient in increasing the thermodynamic driving force. The effect of Delta V of reaction on the morphology of the product nanocrystals was also investigated. Depending on the stress developed in the lattice during the reaction, product nanocrystals underwent varying degrees of morphological changes, such as void formation and fragmentation, in addition to the preservation of the original morphology of the reactant nanocrystals. The knowledge of the effect of ion solvation and Delta V of reaction on the equilibrium and product morphology provides a new strategy and useful guide to the application of cation-exchange reactions for the synthesis of a broader range of inorganic nanocrystals.

Using a solution phase method, the morphology of CuInSe2 nanoparticles could be tuned from small 10 nm spheres to micron length nanowires by varying the relative amount of strong and weak surfactants passivating the surface. Oleylamine and trioctylphosphine oxide were chosen as the strong and weak surfactants, respectively. Small isotropic structures were formed when the oleylamine was the only surfactant with the size of the nanospheres increasing as the amount of oleylamine decreased. For the CuInSe2 nanowires, weakly-binding dioctylphosphine oxide (DOPO), an impurity in the TOPO, was found to be the key surfactant that enables the anisotropic one-dimensional growth. Detailed analysis of the structure of the nanowires indicated that they grow perpendicular to (112) planes, with twinning around the growth axis by ~60 degree rotation. The nanowires exhibit a saw-tooth surface morphology resembling a stack of truncated tetrahedral.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2011-05-9377
Date2011 May 1900
CreatorsWark, Stacey Elaine
ContributorsSon, Dong Hee
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0018 seconds