1 |
Simple Chemical Routes for Changing Composition or Morphology in Metal Chalcogenide NanomaterialsWark, Stacey Elaine 2011 May 1900 (has links)
Metal chalcogenide nanomaterials are interesting due to their size dependent properties and potential use in numerous types of devices or applications. The synthetic methods of binary phase metal chalcogenide nanoparticles are well established, but finding simple ways to make even more complex nanostructures is important. To this end, two techniques were studied: the cation exchange of metal chalcogenide nanocrystals, CdE → MxEy (E = S, Se, Te; M = Pd, Pt) and the solution phase synthesis of ternary chalcogenide nanoparticles.
The effects of cation solvation and the volume change (Delta V) of reaction on the equilibrium and the morphology change in the cation-exchange reactions of CdE → MxEy were investigated. A two-phase solvent environment was particularly efficient in increasing the thermodynamic driving force. The effect of Delta V of reaction on the morphology of the product nanocrystals was also investigated. Depending on the stress developed in the lattice during the reaction, product nanocrystals underwent varying degrees of morphological changes, such as void formation and fragmentation, in addition to the preservation of the original morphology of the reactant nanocrystals. The knowledge of the effect of ion solvation and Delta V of reaction on the equilibrium and product morphology provides a new strategy and useful guide to the application of cation-exchange reactions for the synthesis of a broader range of inorganic nanocrystals.
Using a solution phase method, the morphology of CuInSe2 nanoparticles could be tuned from small 10 nm spheres to micron length nanowires by varying the relative amount of strong and weak surfactants passivating the surface. Oleylamine and trioctylphosphine oxide were chosen as the strong and weak surfactants, respectively. Small isotropic structures were formed when the oleylamine was the only surfactant with the size of the nanospheres increasing as the amount of oleylamine decreased. For the CuInSe2 nanowires, weakly-binding dioctylphosphine oxide (DOPO), an impurity in the TOPO, was found to be the key surfactant that enables the anisotropic one-dimensional growth. Detailed analysis of the structure of the nanowires indicated that they grow perpendicular to (112) planes, with twinning around the growth axis by ~60 degree rotation. The nanowires exhibit a saw-tooth surface morphology resembling a stack of truncated tetrahedral.
|
2 |
Incorporation of metal (silver, copper, iron) chalcogenides (oxide, selenide) nanoparticles into poly(methyl methacrylate) fibers for their antibacterial activitySibokoza, Simon Bonginkosi January 2020 (has links)
D. Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Nanoscience receives a lot of attention in the 21 century and is one of the most advancing technology in our days. It provides many new and advanced technological opportunities. This field involves many disciplines which include chemical, physical, and biological related fields. The advancement of nanoscience makes life to be better and bring about new inventions which can solve many problems in our day to day life. Although there are reservations about the use of these materials in other fields. Some researchers believe that these materials can be a problem to the environment and humanity at large. Therefore, more research needs to be done to fully understand these materials. Polymer science is another field that has been advancing every day. Many problems in our lives require material which have properties from nanomaterials and polymers. The combination of these technologies can leads to new materials which have many possibilities in solving most problems. Some researchers have taken advantage of these two powerful fields and merge them. There has been a lot of work done that involves combination of nanotechnology and polymer science.
The current project is an initiative to manufacture nanofibers. These fibers are prepared using polymer solution mixed with metal oxide and metal selenide nanomaterials. The polymer solution is incorporated with nanoparticles and electrospunned to make nanofibers. The electrospinning afford the material prepared to be at nanoscale. The fact that the material formed is at nanoscale opens many possibilities to be used in various fields. The study is about fabrication of polymer nanofibers embedded with metal chalcogenide nanoparticles. The metal oxide and metal selenide nanoparticles were prepared using complexes. These complexes contain both the metal and the chalcogenide of interest. The complexes are prepared from oxygen-based (urea), and selenium-based (diphenyldiselenide) ligands. The urea complexes co-ordinates with metal using oxygen for iron, however in silver complexes both nitrogen and oxygen are used. These complexes allow easy control of reaction parameters, and thermal decomposes to form metal oxide, metal selenide, and metal. The complexes are very stable and decomposes at about 200 °C. These compounds are thermal decomposed to form metal chalcogenides, and metal nanoparticles. The complexes are characterized with FTIR, TGA, and elemental analysis.
The metal chalcoginedes (copper oxide, iron oxide, silver oxide, copper selenide, iron selenide, and silver selenide) nanoparticles were prepared using thermal decomposition of a single source (complexes or metal salts). The prepared chalcogenides nanoparticles have good absorption and emission properties consistent with small sizes. These nanoparticles are composed of various phased and stoichiometry. Some metal chalcogenides have a mixture of stoichiometry and phase. The metal chalcogenides nanoparticles are dominated by spheres, and other shapes such as rods. These metal chalcogenides have a particles size in the range of 1-36 nm. The metal chalcogenides nanoparticles were tested against bacteria and fungi. These nanoparticles show highest activity in gram positive compared to gram negative bacteria. Metal oxide nanoparticles show the highest activity compared to metal selenide. All the metal chalcogenides show the highest against fungi. The nanoparticles are able to inhibit the fungi at lowest concentration. The nanoparticles are characterized with various instruments which includes UV-Vis, PL, XRD, and TEM.
Nanofibers of poly(methyl methacrylate) (PMMA) incorporated with metal selenide and metal oxide nanoparticles were prepared by electrospinning. The nanofibers incorporated with metal chalcogenide are more thermal stable than PMMA nanofibers. Therefore, incorporation of metal chalcogenides nanoparticles leads to more thermal stability nanofibers. The PMMA are coordinated to the metal oxide and metal selenide through carbonyl oxygen atom. The PMMA incorporated with metal oxide and metal selenide leads to the formation of nanofibers with uneven surface with a diameter in the range of 30 to 200 nm. The prepared fibers are characterized using FTIR, TGA, SEM.
|
3 |
Herstellung von Chalkogeniden für die Solarzellenanwendung über die MicroJet-Reaktor-TechnologieHiemer, Julia 13 January 2023 (has links)
Im Rahmen der vorliegenden Arbeit wurden Metallchalkogenid-Nanopartikel bzw. Quantum Dots größenselektiv mittels kontinuierlicher MicroJet-Reaktor-Technologie in wässrigem Medium erzeugt. Aufgrund der sehr kurzen Mischzeiten im µs- bis ms-Bereich können Keimbildung und -wachstum im MicroJet-Reaktor zeitlich voneinander separiert werden. Die Begrenzung des Partikelwachstum durch den Einsatz von Stabilisatoren oder geringer Präkursorkonzentrationen ermöglichten die Synthese von monodispersen, nanokristallinen Produkten mit sehr schmaler Partikelgrößenverteilung. Ausgehend von den wasserlöslichen Präkursoren Cadmiumnitrat und Natriumsulfid wurde sowohl eine Synthesestrategie für elektrostatisch- als auch Liganden-stabilisierte CdS-Nanopartikel entwickelt. Es wurden zahlreiche Reaktionsparameter wie Temperatur, Präkursorverhältnis, Konzentration oder Fällungsmittel variiert und der Einfluss auf die Partikelgröße überprüft. In weiteren Untersuchungen konnte die Übertragbarkeit der MicroJet-Reaktor-Synthese auf die Metallchalkogenide Cadmiumzinksulfid, Silbersulfid und Silberindiumsulfid validiert werden. Auch komplexere Systeme wie Core/Shell Partikel sind mittels postsynthetischer Beschichtung der im MicroJet-Reaktor hergestellten Nanopartikel möglich. Erste Experimente zur Synthese von CdSe bestätigten die Eignung des kontinuierlichen Verfahrens zur Fällung höherer Chalkogenide.:1 Einleitung 1
1.1 Halbleiternanopartikel 3
1.1.1 Bandstruktur des Festkörpers 3
1.1.2 Interbandübergänge in direkten und indirekten Halbleitern 7
1.1.3 Quantum Confinement 15
1.2 Fällung von Nanopartikeln im MicroJet-Reaktor 20
1.2.1 Partikelbildung durch Kristallisation 20
1.2.2 Funktionsprinzip des MicroJet-Reaktors 22
1.2.3 State of the Art 25
1.3 Nanoskalige Metallchalkogenide 29
1.3.1 Cadmiumchalkogenide 29
1.3.2 Near-Infrared Quantum Dots 31
1.3.3 Core/Shell-Partikel 34
1.4 Zielsetzung 37
2 Ergebnisse und Diskussion 39
2.1 Allgemeines 39
2.2 Cadmiumchalkogenide 47
2.2.1 Hydrothermalsynthese von CdS im Laborautoklaven 47
2.2.1.1 Wiederholbarkeit 48
2.2.1.2 Einfluss des Präkursorverhältnis 50
2.2.1.3 Versuchsplanung zur Untersuchung ausgewählter Reaktionsparameter 51
2.2.1.4 Effektberechnung zur Untersuchung ausgewählter Einflussfaktoren 54
2.2.1.5 Beobachtungen und Charakterisierung 56
2.2.2 Kontinuierliche Synthese von CdS im MicroJet-Reaktor 62
2.2.2.1 MJR-Synthese von CdS aus Cd(NO3)2 und Na2S 62
2.2.2.2 MJR-Synthese von CdS aus Cd(NO3)2 und Thioacetamid 71
2.2.3 CdS/ZnS Core/Shell und Cd1-xZnxS Quantum Dots 76
2.2.3.1 CdS/ZnS Core/Shell Quantum Dots 77
2.2.3.2 Cd1-xZnxS Quantum Dots 88
2.2.4 Hydrothermalsynthese von CdSe im Laborautoklaven 99
2.2.4.1 Wiederholbarkeit 99
2.2.4.2 Präkursorverhältnis Cd2+:Se2- 101
2.2.4.3 Versuchsplanung zur Untersuchung ausgewählter Reaktionsparameter 104
2.2.4.4 Effektberechnung zur Untersuchung ausgewählter Einflussfaktoren 108
2.2.4.5 Beobachtungen und Charakterisierung 111
2.2.5 Kontinuierliche Synthese von CdSe im MicroJet-Reaktor 116
2.3 Near-Infrared Quantum Dots 121
2.3.1 Kontinuierliche Synthese von AgS2 im MJR-Reaktor 121
2.3.1.1 Elektrostatisch stabilisierte Ag2S Quantum Dots 121
2.3.1.2 Ag2S/ZnS Core/Shell Quantum Dots 138
2.3.1.3 Ligandenstabilisierte Ag2S Quantum Dots 143
2.3.2 Kontinuierliche Synthese von Indiumsilbersulfid im MJR-Reaktor 152
3 Experimenteller Teil 165
3.1 Synthesen 165
3.1.1 Verwendete Chemikalien 165
3.1.2 Hydrothermalsynthese im Laborautoklaven 166
3.1.2.1 Versuchsaufbau 166
3.1.2.2 Cadmiumsulfid 167
3.1.2.3 Cadmiumselenid 168
3.1.2.4 Silbersulfid 169
3.1.3 Kontinuierliche Synthese im MicroJet-Reaktor 169
3.1.3.1 Versuchsaufbau und Durchführung der MicroJet-Reaktor-Synthese 169
3.1.3.2 Synthese Liganden-stabilisierter Metallsulfide 171
3.1.3.3 Synthese elektrostatisch stabilisierter Metallsulfide 171
3.1.3.4 Synthese von Cadmiumselenid 172
3.1.3.5 Synthese von Core-Shell-Partikeln 172
3.2 Analytische Methoden 173
3.2.1 Dynamische Lichtstreuung (DLS) 173
3.2.2 Statische Lichtstreuung (SLS) 173
3.2.3 UV/Vis-Absorptionsspektroskopie 173
3.2.4 Photolumineszenz (PL)-Spektroskopie 174
3.2.5 Transmissionselektronenmikroskopie (TEM) 174
3.2.6 Rasterelektronenmikroskopie (REM) 175
3.2.7 Optische Emissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP-OES) 175
3.2.8 Röntgenfluoreszenzanalyse (RFA) 176
3.2.9 Pulver-Röntgendiffraktometrie (PXRD) 176
3.2.10 RAMAN-Spektroskopie 177
3.2.11 Abgeschwächte Totalreflexions-Infrarotspektroskopie (ATR-FTIR) 177
4 Zusammenfassung und Ausblick 179
5 Literatur 182
6 Anhang 195 / In the present work, metal chalcogenide nanoparticles or Quantum Dots were obtained size-selectively using continuous MicroJet Reactor technology. Due to the short mixing times in the µs to ms range, crystallite nucleation and crystal growth are well separated and enable concentration-limited particle growth. Alternatively, particle growth can be limited by stabilizers. Starting from the water-soluble precursors Cd(NO3)2 and Na2S, a synthesis strategy for both electrostatic and ligand stabilized CdS nanoparticles in aqueous medium was developed. The nanocrystalline products obtained were characterized by a narrow, monodisperse particle size distribution. Examining the influence of the particle size, numerous reaction parameters e. g. temperature, ratio of precursors, concentration or precipitant were varied. In further investigations, the transferability of the MicroJet Reactor synthesis to the metal chalcogenides (Cd,Zn)S, Ag2S and AgInS2 was validated. By means of post-synthetic coating of the nanoparticles produced in the MicroJet Reactor, more complex systems such as CdS/ZnS or Ag2S/ZnS core/shell particles are accessible. Initial experiments on the synthesis of CdSe confirmed the suitability of the continuous process for precipitation of selenides.:1 Einleitung 1
1.1 Halbleiternanopartikel 3
1.1.1 Bandstruktur des Festkörpers 3
1.1.2 Interbandübergänge in direkten und indirekten Halbleitern 7
1.1.3 Quantum Confinement 15
1.2 Fällung von Nanopartikeln im MicroJet-Reaktor 20
1.2.1 Partikelbildung durch Kristallisation 20
1.2.2 Funktionsprinzip des MicroJet-Reaktors 22
1.2.3 State of the Art 25
1.3 Nanoskalige Metallchalkogenide 29
1.3.1 Cadmiumchalkogenide 29
1.3.2 Near-Infrared Quantum Dots 31
1.3.3 Core/Shell-Partikel 34
1.4 Zielsetzung 37
2 Ergebnisse und Diskussion 39
2.1 Allgemeines 39
2.2 Cadmiumchalkogenide 47
2.2.1 Hydrothermalsynthese von CdS im Laborautoklaven 47
2.2.1.1 Wiederholbarkeit 48
2.2.1.2 Einfluss des Präkursorverhältnis 50
2.2.1.3 Versuchsplanung zur Untersuchung ausgewählter Reaktionsparameter 51
2.2.1.4 Effektberechnung zur Untersuchung ausgewählter Einflussfaktoren 54
2.2.1.5 Beobachtungen und Charakterisierung 56
2.2.2 Kontinuierliche Synthese von CdS im MicroJet-Reaktor 62
2.2.2.1 MJR-Synthese von CdS aus Cd(NO3)2 und Na2S 62
2.2.2.2 MJR-Synthese von CdS aus Cd(NO3)2 und Thioacetamid 71
2.2.3 CdS/ZnS Core/Shell und Cd1-xZnxS Quantum Dots 76
2.2.3.1 CdS/ZnS Core/Shell Quantum Dots 77
2.2.3.2 Cd1-xZnxS Quantum Dots 88
2.2.4 Hydrothermalsynthese von CdSe im Laborautoklaven 99
2.2.4.1 Wiederholbarkeit 99
2.2.4.2 Präkursorverhältnis Cd2+:Se2- 101
2.2.4.3 Versuchsplanung zur Untersuchung ausgewählter Reaktionsparameter 104
2.2.4.4 Effektberechnung zur Untersuchung ausgewählter Einflussfaktoren 108
2.2.4.5 Beobachtungen und Charakterisierung 111
2.2.5 Kontinuierliche Synthese von CdSe im MicroJet-Reaktor 116
2.3 Near-Infrared Quantum Dots 121
2.3.1 Kontinuierliche Synthese von AgS2 im MJR-Reaktor 121
2.3.1.1 Elektrostatisch stabilisierte Ag2S Quantum Dots 121
2.3.1.2 Ag2S/ZnS Core/Shell Quantum Dots 138
2.3.1.3 Ligandenstabilisierte Ag2S Quantum Dots 143
2.3.2 Kontinuierliche Synthese von Indiumsilbersulfid im MJR-Reaktor 152
3 Experimenteller Teil 165
3.1 Synthesen 165
3.1.1 Verwendete Chemikalien 165
3.1.2 Hydrothermalsynthese im Laborautoklaven 166
3.1.2.1 Versuchsaufbau 166
3.1.2.2 Cadmiumsulfid 167
3.1.2.3 Cadmiumselenid 168
3.1.2.4 Silbersulfid 169
3.1.3 Kontinuierliche Synthese im MicroJet-Reaktor 169
3.1.3.1 Versuchsaufbau und Durchführung der MicroJet-Reaktor-Synthese 169
3.1.3.2 Synthese Liganden-stabilisierter Metallsulfide 171
3.1.3.3 Synthese elektrostatisch stabilisierter Metallsulfide 171
3.1.3.4 Synthese von Cadmiumselenid 172
3.1.3.5 Synthese von Core-Shell-Partikeln 172
3.2 Analytische Methoden 173
3.2.1 Dynamische Lichtstreuung (DLS) 173
3.2.2 Statische Lichtstreuung (SLS) 173
3.2.3 UV/Vis-Absorptionsspektroskopie 173
3.2.4 Photolumineszenz (PL)-Spektroskopie 174
3.2.5 Transmissionselektronenmikroskopie (TEM) 174
3.2.6 Rasterelektronenmikroskopie (REM) 175
3.2.7 Optische Emissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP-OES) 175
3.2.8 Röntgenfluoreszenzanalyse (RFA) 176
3.2.9 Pulver-Röntgendiffraktometrie (PXRD) 176
3.2.10 RAMAN-Spektroskopie 177
3.2.11 Abgeschwächte Totalreflexions-Infrarotspektroskopie (ATR-FTIR) 177
4 Zusammenfassung und Ausblick 179
5 Literatur 182
6 Anhang 195
|
Page generated in 0.1209 seconds