A ce jour, le cuivre est l'élément essentiel du monde industriel, sa consommation et son prix d'achat ne cessent d'augmenter puisqu'il est le composant majoritaire des circuits imprimés et des équipements électroniques. Son recyclage à partir des équipements électroniques en fin de vie appelé les déchets électroniques (e-déchets) reste la seule alternative pour remédier à des risques de pénurie. S'il est facilement recyclable en milieu aqueux, les bains commerciaux couramment utilisés (à base de cyanures et d'acides concentrés) présentent des risques environnementaux importants lors de leur utilisation et de leur retraitement. Plusieurs recherches s'orientent vers l'utilisation de nouveaux électrolytes de type liquides ioniques (LI), qui offrent une alternative écologiquement viable aux solutions actuelles. Dans ce travail de thèse, nous nous sommes intéressés à une classe plus récente de liquides ioniques, les solvants eutectiques à basse température appelé Deep Eutectique Solvant (DES). En effet, ils présentent une facilité d'utilisation car ils apparaissent moins sensibles à la présence d'eau et ont un coût compatible avec des applications industrielles à grande échelle. Si les caractéristiques physico-chimiques des DES (conductivité, solubilité des sels métalliques, fenêtre électrochimique ...) sont satisfaisantes pour envisager la récupération du cuivre, l'inconvénient majeur de ces milieux reste toutefois leur forte viscosité qui conduit à une diminution importante de la cinétique d'électrodéposition et par conséquent à une moindre efficacité du procédé. Pour pallier ce problème, l'utilisation des ultrasons de puissance, est une solution envisagée. Les ultrasons sont en effet connus pour être une méthode d'agitation efficace permettant de promouvoir le transport de matière à l'électrode et d'augmenter le rendement d'électrodéposition dans ce type d'électrolyte. (...). Dans un premier temps, nos travaux se sont portés sur la caractérisation des propriétés physico-chimiques et électrochimiques de trois solvants DES. A la suite de cette étude préliminaire, le mélange de Chlorure de Choline (ChC1) et d'Ethylène Glycol (EU) s'est avéré être le plus approprié car l'ensemble de ses propriétés physico-chimiques et électrochimiques en font un milieu adapté à la récupération de cuivre par voie électrolytique. La deuxième partie a été consacrée à l'étude électrochimique de la réduction des ions Cu (II) et Cu(I) dans le DES (Chlorure de Choline + Ethylène Glycol) par comparaison avec le milieu aqueux (HC1 0,01M). Le mécanisme de réduction du Cul' se déroule en deux étapes dans le DES, mais une modification importante des constantes cinétiques des deux étapes a été constatée. En opérant une dissolution chimique des copeaux de cuivre dans le DES, nous avons de plus constaté que ce solvant permet de stabiliser la forme soluble Cu(I) ce qui présente un avantage considérable en terme de rendement Faradique pour l'étape suivante de redéposition. (...)Enfin nous avons déterminé les paramètres cinétiques des réactions lorsque l'on combine une agitation ultrasonore (20 kHz) et une augmentation de température. L'élévation de température à 50 °C, qui permet de diminuer la viscosité de la solution, rend plus efficace l'agitation par ultrasons et les coefficients de transferts de matière mesurés sont alors optimum. Cette étude a également permis de déterminer les meilleures conditions expérimentales pour l'élaboration des revêtements de cuivre et sa récupération. (...) / The copper is actually an essential element in the industrial world; its consumption and purchase continue to growth because of its major component of printed circuits board and the electronics equipment. It's recycled from the electronic waste; this is the only way to avoid shortage risk. If the copper is easily recycled in aqueous solution, the commercial baths currently in use (cyanide and acid solution) present important environmental risk during their use and their treatments. Several research orientate to a new electrolytes from an ionic liquid, which offer an alternative ecologically viable to the actual solution. In this study we were interested in a recent class of ionic liquid, the eutectic solvent in a low temperature so called Deep eutectic solvent (DES). In fact the DES presents an easy use because there are less sensitive to the water and has a compatible cost for the industrial application in a large scale. If the characteristics physico-chemicals of DES (conductivity, solubilisation of a metallic salt, electrochemical window...) are satisfied to consider the copper recovery, the major inconvenient of these solvent are their higher viscosities which lead to an important reduce of the electrodeposition kinetics and in consequent for lesser efficient process. To avoid this problem the use of ultrasound is a solution to consider. The ultrasound is known to be an effective stirring method to promote mass transport to the electrode and thus the rate of recovery in the DES. It has also an advantage for the metal dissolution. In the first time, our studies were about the characterization of physic-chemical and electrochemical properties of three DES. After this preliminary studies, the mixture of choline chloride (ChCI) and ethylene glycol (EG) appears to be the most appropriate because the whole physic-chemical and electrochemical proprieties will make an electrolyte solution adapted to the recovery of the copper. The second part of this thesis consist of the electrochemical study of the reduction of ions copper (I) and (II) in a Deep Eutectic Solvent (ChCl+EG). To complete this part a comparison with the obtained results in aqueous solvent (Ha 0,01 M) is performed. The mechanism reduction of Cu (II) seems to be in two steps within the DES, but an important modification of the kinetic parameters of these two steps has been seen. During the chemical dissolution of the copper chip in the DES, in addition we discovered that this solvent allowed to stabilize a soluble form Cu(I), which present a considerable advantage in term of Faradic yield for next stage of redeposition. Finally we have determined the kinetic parameters of reaction when we combine an ultrasonic stirring and an increase of the temperature. Rising the temperature at 50c, which allowed reducing the viscosity of the solution, will make more efficient the ultrasonic stirring and the measured coefficient of mass transport are optimum. This study has also allowed us to determine the best experiments conditions elaboration coating of copper and its recovery. To respond to these requirements of global process of copper recovery, we have proceeded in dissolution of metal copper experiments within the DES using the ultrasound to accelerate this step. The leaching of the copper intervenes by corrosion mechanism kinetically limited by the diffusion of the oxidant in the solution, which is accelerated by the ultrasound. In this part of the copper electrodeposition, the deposits elaborated under ultrasound present a thin morphology with a decrease of the grain size. Finally the first recovery experiments, made in a pilot reactor, have been done. The use of ultrasound (20 kHz) permitted to reduce the electrolysis time of 30% to a recovery rate of 90 %.
Identifer | oai:union.ndltd.org:theses.fr/2014BESA2022 |
Date | 11 July 2014 |
Creators | Mourad Mahmoud, Mahmoud |
Contributors | Besançon, Hihn, Jean-Yves, Doche, Marie-Laure, Mandroyan, Audrey |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0359 seconds