Une méthode numérique précise et efficace est proposée pour la simulation de corps déformables interagissant avec un écoulement incompressible. Les équations de Navier-Stokes, considérées dans leur formulation vorticité fonction de courant, sont discrétisées temporellement et spatialement à l'aide respectivement d'un schéma d'ordre 4 de Runge-Kutta et par des différences finies compactes. Grâce à l'utilisation d'un maillage uniforme, nous proposons un nouveau solveur direct au quatrième ordre pour l'équation de Poisson, permettant de garantir l'incompressibilité au zéro machine sur une grille optimale. L'introduction d'un corps déformable dans l'écoulement de fluide est réalisée au moyen d'une méthode de pénalisation de volume. La déformation du corps est imposée par l'utilisation d'un maillage lagrangien structuré mobile qui interagit avec le fluide environnant en raison des forces hydrodynamiques et du moment (calculés sur le maillage eulérien de référence). Une loi de contrôle efficace de la courbure d'un poisson anguilliforme nageant vers une cible prescrite est proposée. La méthode numérique développée prouve son efficacité et précision tant dans le cas de la nage du poisson mais aussi plus d'un grand nombre de problèmes d'interactions fluide-structure. / We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible flows. The temporal and spatial discretizations of the Navier--Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge--Kutta and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.
Identifer | oai:union.ndltd.org:theses.fr/2014AIXM4369 |
Date | 15 December 2014 |
Creators | Ghaffari Dehkharghani, Seyed Amin |
Contributors | Aix-Marseille, Viazzo, Stéphane, Schneider, Kai, Bernd |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0015 seconds