Return to search

Fabrication and Characterization of Intricate Nanostructures

Encapsulation of nanoparticles within hexaniobate nanoscrolls presents interesting advances in the formation of nanocomposites exhibiting unique multi-dimensional properties. Building upon previous successes, facile yet versatile wet-chemical and microwave-irradiation synthetic protocols for the fabrication of a series of hexaniobate composites are presented herein. Solvothermal and, more recently, microwave-assisted methods have been developed that allow for the fabrication of peapod-like structures. During solvothermal treatment, exfoliated hexaniobate nanosheets scroll around highly ordered chains of preformed nanoparticles (NPs) to produce nanopeapods (NPPs). This approach offers versatility and high yields, in addition to the potential for advanced functional device fabrication.
For the characterization of these materials, advanced techniques in atomic force microscopy (AFM) were used for investigating the surface of materials at the nanometer scale. Extensive physical, dynamic, and force modulation studies were performed on novel oxide nanocomposites by implementing particular scanning techniques to determine information such as topology, stress-induced behavior at the nanoscale, magnetic behavior, and frictional forces of the nanoscale materials. These composites were then analyzed by topological intermittent contact studies in tapping and contact mode, as well as with derivative techniques of these commonly used scanning probe approaches.
In addition to studying surfaces using conventional modes of AFM, the mechanical properties of these nanocomposites were measured via dynamic lateral force modulation (DLFM) and magnetic properties of functionalized magnetic nanosheets were mapped via magnetic sampling modulation (MSM). By utilizing the capabilities of the DLFM imaging mode, elastic properties such as Young’s Modulus were measured from force-distance curves. In addition to this modulation mode, MSM was used to selectively map the vibrating magnetic nanomaterials from a modulated electromagnetic field. The information obtained from these AFM techniques can be helpful in determining the relative structural behavior of these nanocomposites and gauge their use in various applications such as structural engineering of nanoarchitectures as well as studying magnetic characteristics of metal oxide nanocomposites that exhibit characteristics different from their bulk counterparts.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3555
Date20 December 2017
CreatorsBrown, Treva T.
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0025 seconds