Cette thèse porte sur la manipulation d'atomes uniques de rubidium 87 dans des pièges dipolaires optiques microscopiques en vue d'applications à l'information quantique. Le dispositif expérimental utilise un objectif de grande ouverture numérique pouvant focaliser un faisceau à la limite de diffraction et collecter efficacement la lumière émise par les atomes.<br /><br />Nous avons caractérisé la géométrie du potentiel et le mouvement des atomes piégés par des mesures de fréquences d'oscillation et d'énergies moyennes.<br /><br />Pour prouver que ce système est adapté au traitement quantique de l'information, nous montrons que son extensibilité à grande échelle est envisageable. A l'aide d'un modulateur de phase programmable par ordinateur et à partir d'un seul faisceau laser, nous avons généré holographiquement des réseaux de micro-pièges dipolaires pour atomes uniques, chacun des sites étant adressable individuellement.<br /><br />En vue de réaliser des portes logiques à deux bits quantiques, nous avons choisi de nous orienter vers leur intrication conditionnelle. Celle-ci passe par le contrôle de l'émission de l'atome à l'échelle du photon unique, obtenue à la suite d'une excitation impulsionnelle. Nous avons conçu une chaîne laser délivrant des impulsions nanosecondes. Elle nous assure un contrôle cohérent de la transition fermée (5S1/2, F = 2, mF = 2) vers (5P3/2, F = 3, mF = 3). Nous avons observé des oscillations de Rabi et des battements quantiques sur des atomes uniques. En ajustant la puissance de la chaîne laser pour réaliser des impulsions pi, on obtient une source déclenchable de photons uniques qui présente un flux de hotons important et un faible taux d'impulsions contenant deux photons.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011604 |
Date | 04 November 2005 |
Creators | Darquié, Benoît |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds