Return to search

Lier la spéciation chimique du cérium à sa biodisponibilité sous différentes conditions environnementales

L’étude qui suit porte sur l’évaluation du risque écotoxicologique du cérium, l’élément le plus exploité de la famille des lanthanides. La présence grandissante de ce métal dans notre quotidien rend possible son relargage dans l’environnement. Il est donc primordial de comprendre l’impact qu’il aura sur les organismes vivant dans un système aquatique. Une approche centrée sur le modèle du ligand biotique a été utilisée pour évaluer adéquatement l’interaction entre le cérium et un ligand biotique à la surface de l’algue unicellulaire Chlamydomonas reinhardtii. Pour mener une étude sur le risque écotoxicologique d’un élément métallique il faut, avant tout, comprendre la spéciation (répartition sous ses différentes formes chimiques) de l’élément en question. Les premières sections du mémoire vont donc traiter des expériences qui ont été menées pour évaluer la spéciation du cérium dans les conditions expérimentales d’exposition à C. reinhardtii. Il sera question de faire la distinction entre la forme particulaire du métal et sa forme dissoute, de caractériser ces changements par spectroscopie ainsi que d’évaluer le pouvoir complexant de la matière organique naturelle. Les résultats montrent une importante déplétion du métal dissout en solution à pH neutre et basique et une forte interaction avec la matière organique naturelle, peu importe le pH de la solution. Ensuite, les expériences de bioaccumulation seront expliquéesen comparant l’effet du pH, de la présence d’un ion compétiteur et de la présence de matière organique naturelle sur les paramètres d’internalisation du cérium. Les résultats indiquent qu’à pH acide, le comportement du cérium est plus prévisible qu’à pH neutre. Néanmoins, en tenant compte de la complexité des milieux naturels, l’interaction du métal avec les molécules complexantes va diminuer son risque d’interaction avec un organisme vivant. / The following study is on the ecotoxicological risk evaluation of cerium, the most widely exploited element of the lanthanide family. The increasing presence of this element in our everyday lives renders possible its release in the environment. It is therefore of primary importance to understand the impact this metal will have on living organisms in aquatic environments. An approach centered on the biotic ligand model was used here to evaluate the interaction between cerium and a biotic ligand at the surface of the unicellular algae Chlamydomonas reinhardtii. To study the ecotoxicological risk of a metallic element one must understand the speciation (partitioning between its multiple chemical species) of the element in question. The first chapters of this thesis will discuss the experiments performed to evaluate cerium speciation under exposure conditions C. reinhardtii. The issue will be to distinguish between the particulate and dissolved species of the metal, to characterise these changes by spectroscopy, as well as to evaluate the complex formation capacity of the metal with natural organic matter. Results indicate an important depletion of dissolved metal in neutral and alkaline solutions as well as a strong interaction with natural organic matter, regardless of solution pH. Bioaccumulation experiments will then be explained and will compare the effects of pH, the presence of competing ions and the presence of natural organic matter on cerium uptake. Results show that cerium’s behaviour is more predictable under acidic pH conditions. Nonetheless, considering the complexity of the natural environment, the interaction of the metal with natural ligands will most likely reduce the risk of cerium’s interaction with living organisms.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/11975
Date10 1900
CreatorsEl-Akl, Philippe
ContributorsWilkinson, Kevin James
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.002 seconds