Return to search

Chimie des Bains pour l’Electrolyse de l’Aluminium : Étude RMN Haute Température et Modélisation / Bath Chemistry in Aluminum Electrolysis : Study by High Temperature NMR and Modeling

Cette thèse porte sur l’étude structurale de mélanges de fluorures fondus utilisés pour la production d’aluminium par électrolyse. Ce procédé est obtenu par dissolution de l'alumine (Al₂O₃) dans un bain de cryolithe fondue (NaF-AlF₃ plus quelques additifs) à 960°C. Afin d’obtenir des données d’entrée pour la modélisation électrocinétique des phénomènes de transport durant le procédé, une meilleure description de la spéciation dans les bains en fonction de leur température et de leur composition est nécessaire.Pour déterminer cette spéciation in situ, nous avons développé une démarche originale combinant la spectroscopie par Résonance Magnétique Nucléaire (RMN) à haute température avec des simulations de Dynamique Moléculaire (DM) couplés à des calculs de premiers principes. Ces derniers basés sur la théorie de la fonctionnelle de la densité (DFT) ont permis de calculer les paramètres d’interaction mis en jeu lors des expériences RMN et d’évaluer la qualité des modèles issus de la DM par comparaison avec les données expérimentales.Les mesures et simulations effectuées dans les systèmes binaires MF-AlF₃ (M= Na ou K) ont confirmé la présence d’ions F‾ et d’espèces anioniques [AlFₓ]³‾ˣ avec une durée de vie comprise entre 5 et 25 ps. La probabilité de former des dimères du type [Al₂Fm]⁶‾ᵐ est inférieure à 10 %. Quel que soit l’alcalin, l’ajout d’alumine dans ces systèmes affecte la proportion d’espèce AlF5²‾ pour former des oxyfluoroaluminates : [Al₂OF6] ²‾, [Al₂OF8]⁴‾, [Al₂O₂F4] ²‾, [Al₂O₂F6]⁴‾ et [Al₂O₃F₂]²‾. Ces derniers sont peu influencés par la présence de CaF₂. En se dissociant partiellement, celui-ci contribue à modifier les équilibres chimiques vers les milieux plus basiques et à augmenter la coordinence moyenne des ions aluminium. / This thesis deals with the structural study of molten fluorides mixtures used for aluminium production by electrolysis. This process is obtained by dissolving alumina (Al₂O₃) in a molten cryolite bath (NaF-AlF₃ plus some additives) at 960°C. In order to obtain input data for the electrokinetic modeling of transport phenomena during the process, a better description of speciation in baths as a function of their composition and temperature is required.To determine this in situ speciation, we developed an original approach combining high temperature nuclear magnetic resonance (NMR) spectroscopy with Molecular Dynamics (MD) simulations coupled with first principle calculations. Based on the density functional theory (DFT), it was possible to calculate the interaction parameters involved in NMR experiments and to evaluate the quality of the models derived from MD when compared to the experimental data.The measurements and simulations carried out in the MF-AlF₃ binary systems (M = Na or K) confirmed the presence of F- and anionic species [AlFₓ]³‾ˣ with a lifetime between 5 and 25 ps. The probability of forming dimers [Al2Fm]6-m is less than 10%. Regardless of alkali, the addition of alumina in these systems affects the proportion of AlF5²‾ species to form oxyfluoroaluminates: [Al₂OF6] ²‾, [Al₂OF8]⁴‾, [Al₂O₂F4] ²‾, [Al₂O₂F6]⁴‾ et [Al₂O₃F₂]²‾. The latter are little influenced by the presence of CaF₂. By partially dissociating, this contributes to modifying the chemical equilibria towards the more basic media and to increasing the average coordination of the aluminium ions.

Identiferoai:union.ndltd.org:theses.fr/2017ORLE2054
Date19 October 2017
CreatorsMachado, Kelly
ContributorsOrléans, Bessada, Catherine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds