Return to search

Space-Time Coding for the Advanced Range Telemetry Continuous Phase Modulation

Aeronautical telemetry systems that transmit the same signal through multiple antennas from the flight vehicle suffer from severe link dropouts when the signals destructively interfere one with another at receiver. The underlying issue is a transmit array with element spacing far greater than the wavelength producing a transmit antenna pattern with significant and deep nulls. Recently, space-time coding techniques have been proven to resolve the issue for systems using linear modulations and shaped-offset quadrature shift keying (SOQPSK) modulation, a non-linear continuous phase modulation (CPM). This thesis examines application of space-time coding techniques to resolve the self-interference issue for another CPM modulation, the advanced range telemetry (ARTM) CPM. It is shown in this thesis among the two branches of space-time coding, space-time block coding (STBC) and space-time trellis coding (STTC), only the latter offers a solution for a full rate, low complexity, no hardware modification implementation. Various candidate STTCs are identified via simulation using the pair-wise error probability as a performance metric. One STTC is identified with trivial implementation costs and an error performance that is a function of code length.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-9413
Date08 April 2020
CreatorsLeatham, Robert L
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0024 seconds