Nanotubular structures from a new family of misfit compounds LnS–TaS₂ with (Ln = La, Ce, Nd, Ho, Er) and LaSe–TaSe₂ (some of them not known hitherto) are reported. Stress relaxation originating from the lattice mismatch between the alternating LnS(Se) and TaS₂(Se) layers, combined with seaming of the dangling bonds in the rim, leads to the formation of a variety of nanotubular structures. Their structures are studied via scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and selected area electron diffraction (SAED). Tubules exhibiting a single folding vector for the LnS(Se) as well as TaS₂(Se) layers were often found. The small values of the c-axis periodicities are indicative of a strong interaction between the two constituent layers which was also supported by Raman spectroscopy and theoretical calculations.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36272 |
Date | 10 January 2020 |
Creators | Radovsky, Gal, Popovitz-Biro, Ronit, Lorenz, Tommy, Joswig, Jan-Ole, Seifert, Gotthard, Houben, Lothar, Dunin-Borkowski, Rafal E., Tenne, Reshef |
Publisher | Royal Society of Chemistry |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 2050-7534, 10.1039/c5tc02983j |
Page generated in 0.0018 seconds