This thesis analyses the highly structured and densely populated farmland surrounding Kakamega Forest (western Kenya) in a spatially-explicit manner. The interdisciplinary approach combines methodologies and technologies from different scientific disciplines: remote sensing with OBIA, GIS and spatially explicit modelling (geomatics and geographic science) with socio-economic as well as agro-economic considerations (human and social sciences) as well as cartographic science. Furthermore, the research is related to conservation biology (biological sciences).
Based on an in-situ ground truthing and visual image interpretation, very high spatial resolution QuickBird satellite imagery covering 466 km² of farmland was analysed using the concept of object-based image analysis (OBIA). In an integrative workflow, statistical analysis and expert knowledge were combined to develop a sophisticated rule set. The classification result distinguishing 15 LULC classes was used alongside with temporally extrapolated and spatially re-distributed population data as well as socio-/agro-economic factors in order to create a spatially-explicit typology of the farmland and to model scenarios of rural livelihoods.
The farmland typology distinguishes ten types of farmland: 3 sugarcane types (covering 48% of the area), 3 tea types (30%), 2 transitional types (15%), 1 steep terrain type (2%), and 1 central type (5%). The scenarios consider different developments of possible future yields and prices for the main agricultural products sugarcane, tea, and maize. Out of all farmland types, the ‘marginal sugarcane type’ is best prepared to cope with future problems. Besides a comparably low population density, a high share of land under cultivation of food crops coupled with a moderate cultivation of cash crops is characteristic for this type.
As part of the research conducted, several novel methodologies were introduced. These include a new conceptual framework for categorizing parameter optimization studies, the area fitness rate (AFR) as a novel discrepancy measure, the technique of ‘classification-based nearest neighbour classification’ for classes which are difficult to separate from others, and a novel approach for accessing the accuracy of OBIA classifications. Finally, this thesis makes a number of recommendations and elaborates promising starting points for further scientific research. / Die vorliegende Arbeit untersucht räumlich-expliziten das stark strukturierte und dicht besiedelte Agrarland um den Kakamega Wald (Westkenia). Dabei kombiniert der interdisziplinäre Ansatz Methoden und Technologien verschiedener Wissenschaftsbereiche: die Fernerkundung mit der objekt-basierten Bildanalyse (OBIA), GIS und die räumlich-explizite Modellierung (Geoinformatik und Geographie) mit sozio- und agro-ökonomische Aspekten (Human- und Sozialwissenschaft) sowie der Kartographie. Zudem steht die Arbeit in Bezug zum Schutz der biologischen Vielfalt (Biologie).
Ausgehend von einer Referenzdatenerfassung vor Ort und einer visuellen Bildinterpretation wurden räumlich sehr hochauflösende QuickBird-Satellitenbilddaten, die 466 km² des Agrarlandes abdecken, mit Hilfe von OBIA ausgewertet. In einem integrativen Ansatz wurden dabei statistische Verfahren und Expertenwissen kombiniert, um einen ausgefeilten Regelsatz zur Klassifizierung zu erzeugen. Das Klassifizierungsergebnis unterscheidet 15 Klassen der Landnutzung bzw. -bedeckung; zusammen mit zeitlich extrapolierten und räumlich neu verteilten Bevölkerungsdaten sowie sozio- und agro-ökonomischen Faktoren ermöglichte es, eine räumlich-explizite Typologie des Agrarlandes zu erstellen und Szenarien zum ländlichen Auskommen zu modellieren.
Die Agrarlandtypologie unterscheidet zehn Landtypen: 3 Zuckerrohr-dominierte Typen (48% des Gebietes), 3 Tee-dominierte Typen (30%), 2 Übergangstypen (15%), 1 Typ steilen Geländes (2%) und 1 zentralen Typ (5%). Die Szenarien betrachten mögliche zukünftige Entwicklungen der Erträge und Preise der Hauptanbauarten Zuckerrohr, Tee und Mais. Von allen Agrarlandtypen ist der „marginal Zuckerrohr-dominierte Typ“ am besten gerüstet, um zukünftigen Problemen zu begegnen. Bezeichnend für diesen Typ sind – neben einer vergleichsweise geringen Bevölkerungsdichte – ein hoher Anteil an Nahrungsmittelanbau zusammen mit einem gemäßigten Anbau von exportorientierten Agrarprodukten.
Als Teil der Forschungsarbeit werden verschiedene neuartige Methoden vorgestellt, u.a. ein neuer konzeptioneller Rahmen für das Kategorisieren von Studien zur Parameteroptimierung, die „area fitness rate“ (AFR) als neue Messgröße für Flächendiskrepanzen, die klassifikations-basierte Nächster-Nachbar Klassifizierung sowie ein Ansatz zum Bestimmen der Güte von OBIA-Klassifizierungen. Schließlich gibt die Arbeit eine Reihe von Empfehlungen und bietet vielversprechende Ausgangspunkte für weiterführende wissenschaftliche Forschungen.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-150628 |
Date | 19 August 2014 |
Creators | Lübker, Tillmann |
Contributors | Technische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr. phil. habil. Manfred F. Buchroithner, Prof. Dr.-Ing. Gertrud Schaab, Prof. Dr. phil. habil. Manfred F. Buchroithner, Prof. Dr.-Ing. Gertrud Schaab, Prof. Dr. habil. Elmar Csaplovics |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0026 seconds