Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-04T13:59:37Z
No. of bitstreams: 1
MAXWELL GUIMARÃES DE OLIVEIRA - DISSERTAÇÃO PPGCC 2012..pdf: 28277196 bytes, checksum: 398cd7b385ee61c414d0086810fbeeed (MD5) / Made available in DSpace on 2018-08-04T13:59:37Z (GMT). No. of bitstreams: 1
MAXWELL GUIMARÃES DE OLIVEIRA - DISSERTAÇÃO PPGCC 2012..pdf: 28277196 bytes, checksum: 398cd7b385ee61c414d0086810fbeeed (MD5)
Previous issue date: 2012-08-20 / Capes / Atualmente, há um volume considerável de dados espaço-temporais disponíveis em vários meios, sobretudo na Internet. A visualização de dados espaço-temporais é uma tarefa complexa, que requer uma série de recursos visuais apropriados para que, em conjunto, possam permitir aos usuários uma correta interpretação das informações analisadas. Além do emprego de técnicas de visualização, a utilização de técnicas de descoberta de conhecimento em bancos de dados tem se mostrado relevante no auxílio à análise exploratória de relacionamentos em dados espaço-temporais. O levantamento do estado da arte em visualização de dados espaço-temporais leva à conclusão de que a área ainda é deficiente em soluções para visualização e análise desses tipos. Muitas abordagens abrangem somente questões espaciais, desprezando as características temporais desses dados. Inserido nesse contexto, o principal objetivo deste trabalho é melhorar a experiência do usuário em visualização e análise espaço-temporal, indo além do universo da visualização dos dados espaço-temporais brutos e considerando, também, a importância em visualização de dados espaço-temporais derivados de um processo de descoberta de conhecimento, mais especificamente algoritmos de clustering. Esse objetivo é atingido com a definição de uma abordagem inovadora em visualização de dados espaço-temporais, e de sua implementação, denominada GeoSTAT
(Geographic SpatioTemporal Analysis Tool), que engloba pontos importantes observados
nas principais abordagens existentes e acrescenta, principalmente, técnicas de visualização voltadas à dimensão temporal e à utilização de algoritmos de clustering, valorizando características até então pouco exploradas em dados espaço-temporais. A validação deste trabalho ocorre por meio de dois estudos de caso, onde cada um aborda dados espaço-temporais de um domínio específico, para demonstrar a experiência do usuário final diante das técnicas de visualização reunidas na abordagem proposta. / Nowadays, there is a considerable amount of spatiotemporal data available in various media, especially on the Internet. The visualization of spatiotemporal data is a complex task that requires a series of visual suitable resources which can enable users to have a correct interpretation of the data. Apart from the use of visualization techniques, the use of techniques of knowledge discovery in databases has proven relevantfor the exploratory analysis of relationships in spatiotemporal data. The state of the art in visualization of spatiotemporal data leads to the conclusion that the area is still deficient in solutions for viewing and analysis of those data. Many approaches cover only spatial issues, ignoring the temporal characteristics of such data. Inserted in this context, the main objective of this work is to improve the user experience in spatiotemporal visualization and analysis, going beyond the universe of visualization of spatiotemporal raw data and also considering the importance of visualization of spatiotemporal data derived from a knowledge discovery process, more specifically clustering algorithms. This goal is achieved by defining an innovative approach for the analysis and visualization of spatiotemporal data, and its implementation, called GeoSTAT (Spatiotemporal Geographic Analysis Tool), which includes importam points in the main existing approaches and adds especially visualization techniques geared to the temporal dimension and the use of clustering algorithms, enhancing unexplored features in spatiotemporal data. The validation of this work occurs through two case studies, where each one deals with spatiotemporal data of a specific domain to demonstrate the end-user experience on the visualization techniques combined in the proposed approach.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:riufcg/1348 |
Date | 04 August 2018 |
Creators | OLIVEIRA, Maxwell Guimarães de. |
Contributors | BAPTISTA, Cláudio de Souza., SCHIEL, Ulrich., OLIVEIRA, Stanley Robson de Medeiros. |
Publisher | Universidade Federal de Campina Grande, PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO, UFCG, Brasil, Centro de Engenharia Elétrica e Informática - CEEI |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca de Teses e Dissertações da UFCG, instname:Universidade Federal de Campina Grande, instacron:UFCG |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds