Return to search

Short-term effects of ambient temperature on daily deaths and hospital admissions

Background: Incidence of death and hospitalizations have been observed to depend on short-term changes in weather and to increase with extreme temperatures. This thesis aims to strengthen the scientific knowledge on the relationship between temperature and daily deaths, but also the relationship between temperature and daily hospital admissions. Methods: We constructed time series regression models using daily counts of death and daily weather from the Stockholm area incorporating adjustment for potential confounding factors, season, and long-term time trends. From these models, we established the short-term relationship with daily temperatures and the associated relative risks on daily deaths allowing for a delay between exposure and subsequent deaths. Daily hospital admissions and daily temperatures were analyzed correspondingly using data from Skåne. Results: Hot and cold temperatures significantly impact on mortality rates as well as rates of hospitalization in Sweden. We found an immediate heat effect on daily deaths, while the impacts of cold temperatures were delayed up to a week after exposure. Cold-related deaths are generally cardiovascular in nature, while deaths resulting from warm temperatures are cardiovascular, respiratory as well as non-cardiorespiratory in nature. The impacts following a heat wave appear to increase proportionally with the length of the extreme hot conditions. The results suggest that the population aged 45 years and older is the main group at elevated risk of death when exposed to high and low temperatures. Moreover, the results suggest that there are several factors of susceptibility on an individual basis that correspond to larger relative risk with high and/or low temperatures. Daily hospitalisations increased in particular among individuals with respiratory illnesses during extreme persistent heat, whereas high temperatures in general have little impact. In contrast, hospitalizations increased for up to two weeks following exposure to cold temperatures. Conclusions: The health impacts related to temperature are a serious concern and the attributed impacts are likely to increase to some extent in the future due to an ageing population. Public health preventive strategies should be developed to prevent health consequences related to heat waves and cold temperatures. Future studies should aim at identifying susceptible individuals with elevated death risk at hot and cold ambient temperature conditions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-32906
Date January 2010
CreatorsRocklöv, Joacim
PublisherUmeå universitet, Yrkes- och miljömedicin, Umeå : Umeå Universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUmeå University medical dissertations, 0346-6612 ; 1341

Page generated in 0.0028 seconds