We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge - de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates
for the eigenvalues of that operator and discuss some examples.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:562 |
Date | January 2004 |
Creators | Ginoux, Nicolas |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Postprint |
Format | application/pdf |
Source | Journal of geometry and physics. - 52 (2004), 4, S. 480 - 498 |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.002 seconds