The famous Black-Scholes partial differential equation is one of the most widely used and researched equations in modern financial engineering to address the complex evaluations in the financial markets. This thesis investigates a numerical technique, using a fourth-order discretization in time and space, to solve a generalized version of the classical Black-Scholes partial differential equation. The numerical discretization in space consists of a fourth order centered difference approximation in the interior points of the spatial domain along with a fourth order left and right sided approximation for the points near the boundary. On the other hand, the temporal discretization is made by implementing a Runge-Kutta order four (RK4) method. The designed approximations are analyzed numerically with respect to stability and convergence properties.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-56279 |
Date | January 2021 |
Creators | Tajammal, Sidra |
Publisher | Mälardalens högskola, Akademin för utbildning, kultur och kommunikation |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds