This thesis investigates a relatively new method for harvesting wind energy by using flexible piezoelectric polymers with additional sails to increase their ability to harvest wind energy. This paper also introduces a new topology deemed the “stacked buck” that allows for multiple inputs to a system with a single output. Derivations and analysis detail the workings of the “stacked buck” with a laboratory test to show a working model. This paper also reports another experiment done in a wind tunnel to analyze the capability of the piezoelectric polymers as sources to the “stacked buck” topology with measurements of the power output. The results of this thesis demonstrate that because the design is very modular, it is possible to scale the proposed wind energy harvesting system for small power applications.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1519 |
Date | 01 April 2011 |
Creators | Thornton, Jameson J |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses and Project Reports |
Page generated in 0.0022 seconds