Tumors exhibit complex organization and contain a variety of cell populations. The realization that the regenerative properties of a tumor may be largely confined to a cell subpopulation (cancer stem cell) is driving a new era of anti-cancer research. Cancer stem cells from Glioblastoma Multiforme tumors express markers that are also expressed in non-cancerous neural stem cells, including nestin and Sox2. We previously showed that the transcription factor Hes3 is a marker of neural stem cells, and that its expression is inhibited by JAK activity. Here we show that Hes3 is also expressed in cultures from glioblastoma multiforme which express neural stem cell markers, can differentiate into neurons and glia, and can recapitulate the tumor of origin when transplanted into immunocompromised mice. Similar to observations in neural stem cells, JAK inhibits Hes3 expression. Hes3 RNA interference reduces the number of cultured glioblastoma cells suggesting a novel therapeutic strategy.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27269 |
Date | 28 November 2013 |
Creators | Park, Deric M., Jung, Jinkyu, Masjkur, Jimmy, Makrogkikas, Stylianos, Ebermann, Doreen, Saha, Sarama, Rogliano, Roberta, Paolillo, Nicoletta, Pacioni, Simone, McKay, Ron D., Poser, Steve, Androutsellis-Theotokis, Andreas |
Publisher | Nature Publishing Group |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.1038/srep01095 |
Page generated in 0.002 seconds