Return to search

Detecção não supervisionada de posicionamento em textos de tweets / Unsupervised stance detection in texts of tweets

Detecção de posicionamento é a tarefa de automaticamente identificar se o autor de um texto é favorável, contrário, ou nem favorável e nem contrário a uma dada proposição ou alvo. Com o amplo uso do Twitter como plataforma para expressar opiniões e posicionamentos, a análise automatizada deste conteúdo torna-se de grande valia para empresas, organizações e figuras públicas. Em geral, os trabalhos que exploram tal tarefa adotam abordagens supervisionadas ou semi-supervisionadas. O presente trabalho propõe e avalia um processo não supervisionado de detecção de posicionamento em textos de tweets que tem como entrada apenas o alvo e um conjunto de tweets a rotular e é baseado em uma abordagem híbrida composta por 2 etapas: a) rotulação automática de tweets baseada em um conjunto de heurísticas e b) classificação complementar baseada em aprendizado supervisionado de máquina. A proposta tem êxito quando aplicada a figuras públicas, superando o estado-da-arte. Além disso, são avaliadas alternativas no intuito de melhorar seu desempenho quando aplicada a outros domínios, revelando a possibilidade de se empregar estratégias tais como o uso de alvos e perfis semente dependendo das características de cada domínio. / Stance Detection is the task of automatically identifying if the author of a text is in favor of the given target, against the given target, or whether neither inference is likely. With the wide use of Twitter as a platform to express opinions and stances, the automatic analysis of this content becomes of high regard for companies, organizations and public figures. In general, works that explore such task adopt supervised or semi-supervised approaches. The present work proposes and evaluates a non-supervised process to detect stance in texts of tweets that has as entry only the target and a set of tweets to classify and is based on a hybrid approach composed by 2 stages: a) automatic labelling of tweets based on a set of heuristics and b) complementary classification based on supervised machine learning. The proposal succeeds when applied to public figures, overcoming the state-of-the-art. Beyond that, some alternatives are evaluated with the intention of increasing the performance when applied to other domains, revealing the possibility of use of strategies such as using seed targets and profiles depending on each domain characteristics.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/169098
Date January 2017
CreatorsDias, Marcelo dos Santos
ContributorsBecker, Karin
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds