We give a construction of an eigenstate for a non-critical level of the Hamiltonian function, and investigate the contribution of Morse critical points to the spectral decomposition. We compare the rigorous result with the series obtained by a perturbation theory. As an example the relation to the spectral asymptotics is discussed.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:3016 |
Date | January 2006 |
Creators | Fedosov, B. |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Preprint |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0019 seconds