• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On a spectral theorem for deformation quantization

Fedosov, B. January 2006 (has links)
We give a construction of an eigenstate for a non-critical level of the Hamiltonian function, and investigate the contribution of Morse critical points to the spectral decomposition. We compare the rigorous result with the series obtained by a perturbation theory. As an example the relation to the spectral asymptotics is discussed.
2

On index theorem for symplectic orbifolds

Fedosov, Boris, Schulze, Bert-Wolfgang, Tarkhanov, Nikolai January 2003 (has links)
We give an explicit construction of the trace on the algebra of quantum observables on a symplectic orbifold and propose an index formula.
3

Smooth $*$--Algebras

Peter.Michor@esi.ac.at 19 June 2001 (has links)
No description available.
4

Moduli spaces and deformation quantization in infinite dimensions

Fedosov, Boris January 1998 (has links)
We construct a deformation quantization on an infinite-dimensional symplectic space of regular connections on an SU(2)-bundle over a Riemannian surface of genus g ≥ 2. The construction is based on the normal form thoerem representing the space of connections as a fibration over a finite-dimensional moduli space of flat connections whose fibre is a cotangent bundle of the infinite-dimensional gauge group. We study the reduction with respect to the gauge groupe both for classical and quantum cases and show that our quantization commutes with reduction.
5

Position dependent non-commutativity in two dimensions

López, Armand Idárraga January 2015 (has links)
Orientador: Prof. Dr. Vladislav Kupriyanov / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , 2015. / No presente trabalho estudamos as consequências físicas da não-comutatividade dependente da posição e rotacionalmente invariante em duas dimensões [x, y] = iq f (x2 + y2), usando a teoria de perturbações em mecânica quântica e considerando os modelos exatamente solúveis como o oscilador harmônico isotrópico e o problema de Landau. Nós demonstramos a consistência da abordagem proposta, em particular, derivamos a versão não-comutativa da equação de continuidade e mostramos que a probabilidade é conservada na nossa abordagem. Pesquisamos três formas gerais diferentes para a f (r): constante, monomial de r2 e exponencial Gaussiana. Obtendo resultados diversos de acordo com as características específicas de cada f (e. g. a potência do monomio, largura da Gaussiana). Para a maior parte das escolhas da f , temos encontrado quebra da degenerescência. / In the present work we study the physical consequences of the position dependent rotationally invariant noncommutativity in two dimensions [x, y] = iq f (x2 + y2), using the perturbation theory in quantum mechanics and considering the exactly solvable models in standard quantum mechanics: isotropic harmonic oscillator and Landau problem. We demonstrate the consistency of the proposed approach, in particular, we derive the noncommutative continuity equation and show that the probability is conserved in our approach. We investigate three different general forms of f (r): constant, monomial of r2 and Gaussian exponential. Obtaining diverse results according to specific characteristics of each f (e. g. monomial power and Gaussian width). Degeneracy breaking is found in most of the cases.
6

Quantização de sistemas não-Lagrangianos e mecânica quântica não-comutativa / Quantization of non-Lagrangian systems and noncommutative quantum mechanics

Kupriyanov, Vladislav 23 March 2009 (has links)
Nesta tese apresentamos três problemas interligados: a quântização de teorias não-Lagrangianos, a mecânica quântica não-comutativa (MQNC) e a construção do produto estrela atravéz do ordenamento de Weyl. No contexto do primeiro problema foi elaborada uma abordagem da quantização canônica de sistemas com as equações de movimento não-Lagrangianas. Construímos um princípio da ação mínima para um sistema equivalente das equações diferenciais de primeira ordem. Existe uma ambiguidade não-trivial (que não se reduz a uma derivada total) na definição da função de Lagrange para os sistemas de equações de primeira ordem. Apresentamos uma descrição completa desta ambiguidade. O esquema proposto é aplicado para a quantização da teoria quadrática geral. Também foi construida a quantização do oscilador harmônico amortecido e da carga elétrica com radiação. No contexto da MQNC elaboramos uma formulação da integral de trajetória da MQNC relativística e construímos a generalização não-comutativa da ação da super-partícula. A quantização da ação proposta fornece as equações de Klein-Gordon e de Dirac nas teorias de campo não-comutativas. No contexto do terceiro problema desenvolvemos uma abordagem para a quantização por deformação no plano real com uma estrutura de Poisson arbitrária baseada no ordenamento simétrico dos produtos dos operadores. É formulado um procedimento iterativo simples e efetivo para a construção do produto estrela. Este procedimento nos permitiu calcular o produto estrela em ordens altas (em terceira e quarta ordens), algo que foi feito pela primeira vez. Exceto por uma análise da cohomologia, que não consideramos no artigo, o método proposto dá uma descrição explicita, na linguagem matemática usual da física, do produto estrela. / We present here three interrelated problems: quantization of non-Lagrangian theories, noncommutative quantum mechanics (NCQM) and a constructions of the star product trough the the Weyl ordering. In the context of the first problem an approach to the canonical quantization of systems with non-Lagrangian equations of motion is proposed. We construct an action principle for an equivalent first-order equations of motion. There exists an ambiguity (not reducible to a total time derivative) in associating a Lagrange function with the given set of equations. We give a complete description of this ambiguity. The proposed scheme is applied to quantization of a general quadratic theory. Also the quantization of a damped oscillator and a radiating point-like charge is constructed. In the context of NCQM we propose a path integral formulation of relativistic NCQM and construct a noncommutative generalization of superparticle action. After quantization, the proposed action reproduces the Klein-Gordon and Dirac equations in the noncommutative field theories. In the context of the third problem we develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which based on Weyl symmetrically ordered operator products. A simple and effective iterative procedure of the construction of star products is formulated. This procedure allowed us to calculate the third and the fourth order star products. Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
7

Quantização de sistemas não-Lagrangianos e mecânica quântica não-comutativa / Quantization of non-Lagrangian systems and noncommutative quantum mechanics

Vladislav Kupriyanov 23 March 2009 (has links)
Nesta tese apresentamos três problemas interligados: a quântização de teorias não-Lagrangianos, a mecânica quântica não-comutativa (MQNC) e a construção do produto estrela atravéz do ordenamento de Weyl. No contexto do primeiro problema foi elaborada uma abordagem da quantização canônica de sistemas com as equações de movimento não-Lagrangianas. Construímos um princípio da ação mínima para um sistema equivalente das equações diferenciais de primeira ordem. Existe uma ambiguidade não-trivial (que não se reduz a uma derivada total) na definição da função de Lagrange para os sistemas de equações de primeira ordem. Apresentamos uma descrição completa desta ambiguidade. O esquema proposto é aplicado para a quantização da teoria quadrática geral. Também foi construida a quantização do oscilador harmônico amortecido e da carga elétrica com radiação. No contexto da MQNC elaboramos uma formulação da integral de trajetória da MQNC relativística e construímos a generalização não-comutativa da ação da super-partícula. A quantização da ação proposta fornece as equações de Klein-Gordon e de Dirac nas teorias de campo não-comutativas. No contexto do terceiro problema desenvolvemos uma abordagem para a quantização por deformação no plano real com uma estrutura de Poisson arbitrária baseada no ordenamento simétrico dos produtos dos operadores. É formulado um procedimento iterativo simples e efetivo para a construção do produto estrela. Este procedimento nos permitiu calcular o produto estrela em ordens altas (em terceira e quarta ordens), algo que foi feito pela primeira vez. Exceto por uma análise da cohomologia, que não consideramos no artigo, o método proposto dá uma descrição explicita, na linguagem matemática usual da física, do produto estrela. / We present here three interrelated problems: quantization of non-Lagrangian theories, noncommutative quantum mechanics (NCQM) and a constructions of the star product trough the the Weyl ordering. In the context of the first problem an approach to the canonical quantization of systems with non-Lagrangian equations of motion is proposed. We construct an action principle for an equivalent first-order equations of motion. There exists an ambiguity (not reducible to a total time derivative) in associating a Lagrange function with the given set of equations. We give a complete description of this ambiguity. The proposed scheme is applied to quantization of a general quadratic theory. Also the quantization of a damped oscillator and a radiating point-like charge is constructed. In the context of NCQM we propose a path integral formulation of relativistic NCQM and construct a noncommutative generalization of superparticle action. After quantization, the proposed action reproduces the Klein-Gordon and Dirac equations in the noncommutative field theories. In the context of the third problem we develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which based on Weyl symmetrically ordered operator products. A simple and effective iterative procedure of the construction of star products is formulated. This procedure allowed us to calculate the third and the fourth order star products. Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
8

Bi-fractional transforms in phase space

Agyo, Sanfo David January 2016 (has links)
The displacement operator is related to the displaced parity operator through a two dimensional Fourier transform. Both operators are important operators in phase space and the trace of both with respect to the density operator gives the Wigner functions (displaced parity operator) and Weyl functions (displacement operator). The generalisation of the parity-displacement operator relationship considered here is called the bi-fractional displacement operator, O(α, β; θα, θβ). Additionally, the bi-fractional displacement operators lead to the novel concept of bi-fractional coherent states. The generalisation from Fourier transform to fractional Fourier transform can be applied to other phase space functions. The case of the Wigner-Weyl function is considered and a generalisation is given, which is called the bi-fractional Wigner functions, H(α, β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to give the bi-fractional Q−functions and bi-fractional P−functions respectively. The generalisation is likewise applied to the Moyal star product and Berezin formalism for products of non-commutating operators. These are called the bi-fractional Moyal star product and bi-fractional Berezin formalism. Finally, analysis, applications and implications of these bi-fractional transforms to the Heisenberg uncertainty principle, photon statistics and future applications are discussed.
9

Star-exponential of normal j-groups and adapted Fourier transform

Spinnler, Florian 23 April 2015 (has links)
This thesis provides the explicit expression of the star-exponential for the action of normal j-groups on their coadjoint orbits, and of the so-called modified star-exponential defined by Gayral et al. Using this modified star-exponential as the kernel of a functional transform between the group and its coadjoint orbits yields an adapted Fourier transform which is also detailed here. The normal j-groups arise in the work of Pytatetskii-Shapiro, who established the one-to-one correspondence with homogeneous bounded domains of the complex space; these groups are also the central element of the deformation formula recently developed by Bieliavsky & Gayral (a non abelian analog of the strict deformation quantization theory of Rieffel). Since these groups are exponential, the results given in this text illustrate the general work of Arnal & Cortet on the star-representations of exponential groups.<p> As this work is meant to be as self-contained as possible, the first chapter reproduces many definitions introduced by Bieliavsky & Gayral, in order to obtain the expression of the symplectic symmetric space structure on normal j-groups, and of their unitary irreducible representations. The Weyl-type quantizer associated to this symmetric structure is then computed, thus yielding the Weyl quantization map for which the composition of symbols is precisely the deformed product defined by Bieliavsky-Gayral on normal j-groups. A detailed proof of the structure theorem of normal j-groups is also provided.<p> The second chapter focuses on the expression and properties of the star-exponential itself, and exhibits a useful tool for the computation, namely the resolution of the identity associated to square integrable unitary irreducible representations of the groups. The result thus obtained satisfies the usual integro-differential equation defining the star-exponential. A criterion for the existence of a tempered pair underlying a given tempered structure on Lie groups is proven; the star-exponential functions are also shown to belong to the multiplier algebra of the Schwartz space associated to the tempered structure. Before that, it is shown that all Schwartz spaces that appear in this work are isomorphic as topological vector spaces.<p> The modified version of this star-exponential is computed in chapter three, first for elementary normal j-groups and then for normal j-groups. It is then used to define an adapted Fourier transform between the group and the dual of its Lie algebra. This transform generalizes (to all normal j-groups) a Fourier transform that was already studied in the “ax+b” case by Gayral et al. (2008), as well as by Ali et al. (2003) in the context of wavelet transforms. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
10

Bi-fractional transforms in phase space

Agyo, Sanfo D. January 2016 (has links)
The displacement operator is related to the displaced parity operator through a two dimensional Fourier transform. Both operators are important operators in phase space and the trace of both with respect to the density operator gives the Wigner functions (displaced parity operator) and Weyl functions (displacement operator). The generalisation of the parity-displacement operator relationship considered here is called the bi-fractional displacement operator, O(α, β; θα, θβ). Additionally, the bi-fractional displacement operators lead to the novel concept of bi-fractional coherent states. The generalisation from Fourier transform to fractional Fourier transform can be applied to other phase space functions. The case of the Wigner-Weyl function is considered and a generalisation is given, which is called the bi-fractional Wigner functions, H(α, β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to give the bi-fractional Q−functions and bi-fractional P−functions respectively. The generalisation is likewise applied to the Moyal star product and Berezin formalism for products of non-commutating operators. These are called the bi-fractional Moyal star product and bi-fractional Berezin formalism. Finally, analysis, applications and implications of these bi-fractional transforms to the Heisenberg uncertainty principle, photon statistics and future applications are discussed.

Page generated in 0.0572 seconds