We perform Monte-Carlo simulations of a binary, strongly separated mixture of A- and B-type homopolymers with some amount of random AB copolymers added. The interface is analyzed and the interface tension is calculated using the model of capillary waves. We can clearly demonstrate that random copolymers are localized at real, fluctuating interfaces between incompatible polymer species and micellization is not favored over adsorption. Our study proves that random copolymers are potential candidates for compatibilization of polymer-polymer mixtures. By simulating random copolymers in a one-component bulk and comparing their free energy to the copolymers adsorbed at the two-phase interface we show that the adsorption is thermodynamically stable. We use scaling arguments developed for ideal and non-fluctuating interfaces to rationalize the simulation results and we calculate the reduction of interface tension with increasing amount of the adsorbed copolymers.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36400 |
Date | 09 December 2019 |
Creators | Gazuz, Igor, Sommer, Jens-Uwe |
Publisher | Royal Society of Chemistry |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1744-6848, 10.1039/c4sm01293c |
Page generated in 0.002 seconds