A new type of steel plate shear wall has been devised which resists out-of-plane buckling without requiring stiffeners. The ring-shaped steel plate shear wall (RS-SPSW) includes a web plate that is cut with a pattern of holes leaving ring-shaped portions of steel connected by diagonal links. The ring shape resists out-of-plane buckling through the mechanics of how a circular ring deforms into an ellipse. It has been shown that the ring's compression diagonal will shorten a similar amount as the tension diagonal elongates, essentially eliminating the slack in the direction perpendicular to the tension field. Because of the unique features of the ring's mode of distortion, the load-deformation response of the resulting RS-SPSW system can exhibit full hysteretic behavior and possess greatly improved stiffness relative to thin unstiffened SPSW. The concept has been validated through testing on seven 34 in x 34 in panels. General conclusions about influence of different geometric parameters on plate behavior have been made. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/52633 |
Date | 12 June 2013 |
Creators | Egorova, Natalia Vadimovna |
Contributors | Civil and Environmental Engineering, Eatherton, Matthew R., Charney, Finley A., Moen, Cristopher D. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds