Return to search

Non-Markovian Dissipative Quantum Mechanics with Stochastic Trajectories

All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called "the environment" may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach.

With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces.

The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems.

As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time propagation - until thermalization is reached - is shown to be possible with the presented approach. The properties of the thermalized density are determined and they are ascertained to be independent of the system's initial state. Furthermore, the dependence on the bath's temperature and coupling strength is analyzed and it is demonstrated how a change of the bath parameters can be used to tune the system from the dissociative to the bound regime.

A second investigation is conducted for a dissipative tunneling scenario in which a wave packet impinges on a barrier. The dependence of the transmission probability on the initial state's kinetic energy as well as the bath's temperature and coupling strength is computed.

For both systems, a comparison with the high-temperature Markovian quantum Brownian limit is performed. The importance of a full non-Markovian treatment is demonstrated as deviations are shown to exist between the two descriptions both in the low temperature cases where they are expected and in some of the high temperature cases where their appearance might not be anticipated as easily.:1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Theory of Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Influence Functional Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Quantum Brownian Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Stochastic Unraveling of the Influence Functional . . . . . . . . . . . . . . . 20
2.4 Improved Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Modified Dynamic Response . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Guide Trajectory Transformation . . . . . . . . . . . . . . . . . . . . 24
2.5 Obtaining Properly Correlated Stochastic Samples from Filtered White Noise 24
3 Unified Stochastic Trajectory Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Semiclassical Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 Guide Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Real Coherent State Center Coordinates . . . . . . . . . . . . . . . . 31
3.1.3 Propagation Scheme Including Stochastic Forces . . . . . . . . . . . 32
3.2 Stochastic Bohmian Mechanics with Complex Action . . . . . . . . . . . . . 33
3.2.1 Hydrodynamic Formulation of Bohmian Mechanics . . . . . . . . . . 33
3.2.2 Bohmian Mechanics with Complex Action . . . . . . . . . . . . . . . 34
3.2.3 Stochastic BOMCA Trajectories . . . . . . . . . . . . . . . . . . . . 38
3.3 Noise Distribution Preserving Removal of Adverse Samples . . . . . . . . . . 39
4 Dissipative Harmonic Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Reservoir Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Harmonic Oscillator Analytic Expectation Values . . . . . . . . . . . . . . . 42
4.2.1 Ohmic Bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Drude Regularized Bath . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Sampling Strategies and Analytic Comparison . . . . . . . . . . . . . . . . . 44
4.4 Limits of the Markovian Approximation . . . . . . . . . . . . . . . . . . . . 45
5 Dissipative Vibrational Dynamics of Diatomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Molecular Morse Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Anharmonic Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Transient Non-Markovian Effects . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Trapping by Dissipation and Thermalization . . . . . . . . . . . . . . . . . . 53
6 Tunneling with Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Eckart Barrier Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Dissipative Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Investigation of Markovianity . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Appendix A Conventions for Constants, Reservoir Kernels, and Influence Phases 69
Appendix B Stochastic Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.1 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 71
B.2 Position Verlet Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.3 Runge-Kutta Fourth Order Scheme . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix CMorse Oscillator Expectation Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Appendix DPrerequisites of a Successful Stochastic Propagation . . . . . . . . . . . . . . 79
D.1 Hubbard-Stratonovich Transformation . . . . . . . . . . . . . . . . . . . . . 79
D.2 Kernels of the Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
D.2.1 Quadratic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
D.2.2 Quartic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
D.2.3 Strictly Ohmic Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . 89
D.3 Guide Trajectory Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.3.1 Quadratic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.3.2 Quartic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
D.3.3 Strictly Ohmic Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . 92
D.4 Computation of Matrix Elements and Expectation Values . . . . . . . . . . 92
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25457
Date12 October 2010
CreatorsKoch, Werner
ContributorsGroßmann, Frank, Schmidt, Rüdiger, Grabert, Hermann, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds