Certain hydrogel forming de novo proteins that utilize different crosslinking
methods are studied experimentally on a rheometer. The stress reaxation
modulus of CRC, a telechelic, triblock protein, is shown to be that of
a stretched exponential function with a value of β ≅ 0.5. The insertion of
an integrin binding domain and changes in pH within the range 6.5–8.5 are
shown not to significantly affect the resulting rheological behavior. A selective
chemical crosslinker is used on CRC hydrogel systems and is shown to
change the rheological behavior of the system to that of a combination of a
chemically and physically crosslinked system. Chemically crosslinked hydrogels
composed of W6, a wheat gluten-based protein, demonstrate a storage
modulus weakly dependent on the angular frequency that is much greater
than the loss modulus, with a modulus concentration dependence of c^9/4.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/20565 |
Date | January 2012 |
Creators | Scott, Shane |
Contributors | Harden, James |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds