Spelling suggestions: "subject:"los modulus""
1 |
Microstructural characterization & viscoelastic properties of AlZnMg & AlCuMg alloysRojas Gregorio, José Ignacio 11 January 2012 (has links)
The comprehension of the viscoelastic behaviour of metals is of high interest as these materials are subjected to dynamic
loads in most of their structural applications, and also because it enables a deeper understanding of several technologically
essential properties, like mechanical damping and yielding. Thus, research on this field is needed not only because it may
lead to new potential applications of metals, but also because predictability of the fatigue response may be greatly enhanced.
Indeed, fatigue is the consequence of microstructural effects induced in a material under dynamic loading, while the
viscoelastic behaviour is also intimately linked to the microstructure. Accordingly, the characterization of the viscoelastic
response of a material offers an alternative method for analysing its microstructure and ultimately its fatigue behaviour.
This research is aimed at the identification, characterization and modelling of the effects of temperature, excitation frequency
and microstructure/phase transformations (when present) on the viscoelastic behaviour of aluminium alloys AA 7075-T6 and
AA 2024-T3, and of pure aluminium in the H24 temper. The identification of the mechanical relaxation processes taking place
and the relation between the viscoelastic response of AA 7075-T6 and AA 2024-T3 and the fatigue behaviour will be
attempted for all these materials. Finally, we intend to investigate possible influences of the dynamic loading frequency on
fatigue, and especially the existence of a threshold frequency marking the transition from a static-like response of the
material to the advent of fatigue problems.
AA 7075-T6 and AA 2024-T3 were selected for this study because these alloys are key representatives of their important
families and are highly suitable to a number of industrial applications in the aerospace sector and transport industry. Pure
aluminium was selected because of the inherent interest of this metal, for comparison purposes and for discussing the
phenomena observed for the alloys.
To accomplish the objectives, the viscoelastic response of the materials was measured experimentally with a Dynamic-
Mechanical Analyser (DMA). The results were combined with Transmission Electron Microscopy (TEM) and Differential
Scanning Calorimetry (DSC). An analytical model was proposed which fits the storage modulus up to 300 ºC. The model
takes into account the effect of temperature, the excitation frequency and the concentration of some precipitates for the alloys.
This allows us to test models proposed for the reaction rates of the associated microstructural transformations, to determine
their kinetic parameters and to characterize their influence on the viscoelastic behaviour, showing that the DMA is a good tool
for studying the material microstructure, phase transformation kinetics and the influence of transformations on the
viscoelastic properties of materials.
The Time-Temperature Superposition (TTS) principle has been successfully applied to the DMA data, providing master
curves for the storage and loss moduli. Also, it is proposed that the decrease of yield and fatigue strength with temperature
observed in some aluminium alloys may be due to the internal friction increase with temperature. Finally, the existence of a
threshold frequency is suggested, below which materials subjected to dynamic loading exhibit a static-like, elastic response,
such that creep mechanisms dominate and deterioration due to fatigue may be neglected. A procedure to estimate this
transition frequency is proposed. / La comprensión del comportamiento visco-elástico de los metales es de gran interés ya que estos están sometidos a
cargas dinámicas en la mayoría de sus aplicaciones estructurales, y también porque posibilita un conocimiento más
profundo de varias propiedades esenciales tecnológicamente, como el amortiguamiento mecánico y el límite elástico. Así,
la investigación en este campo es necesaria no sólo porque puede conducir hacia nuevas aplicaciones potenciales de los
metales, sino también porque la capacidad de predecir el comportamiento en fatiga de los mismos puede verse
ampliamente mejorada. De hecho, la fatiga de los metales es consecuencia de efectos microestructurales inducidos en el
material bajo cargas dinámicas, y el comportamiento visco-elástico está también íntimamente relacionado con la
microestructura. Así, la caracterización de la respuesta visco-elástica de un material ofrece un método alternativo para
analizar su microestructura y, en último término, su respuesta en fatiga.
Este trabajo tiene por objetivos la identificación, caracterización y modelización de los efectos de la temperatura, la
frecuencia de excitación y la microestructura/transformaciones de fase en el comportamiento visco-elástico de las
aleaciones de aluminio AA 7075-T6 y AA 2024-T3, y de aluminio puro en estado H24. Se aborda también la identificación de
los procesos de relajación mecánicos que tienen lugar en estos materiales y la identificación de la relación entre el
comportamiento visco-elástico de AA 7075-T6 y 2024-T3 y su respuesta en fatiga. Finalmente, se intentará investigar
posibles influencias de la frecuencia de la carga dinámica en la fatiga, y en especial la existencia de una frecuencia umbral
que marque la transición desde una respuesta cuasi-estática del material hacia la aparición de problemas de fatiga.
AA 7075-T6 y AA 2024-T3 fueron seleccionadas porque son representantes clave de sus importantes familias de
aleaciones, y son altamente adecuadas para un gran número de aplicaciones en los sectores aeroespacial y del transporte.
El aluminio puro fue seleccionado para este estudio por su interés inherente, y para realizar comparaciones y discutir
algunos de los fenómenos observados en las aleaciones.
Para cumplir los objetivos, el comportamiento visco-elástico de los materiales fue medido experimentalmente con un
Dynamic-Mechanical Analyser (DMA). Los resultados se combinaron con microscopía electrónica y calorimetría. Se propuso
un modelo analítico que ajusta la componente real del módulo elástico dinámico (el storage modulus) hasta 300 ºC. El
modelo toma en consideración los efectos de la temperatura, la frecuencia de la carga dinámica y la concentración de
ciertos precipitados para el caso de las aleaciones. Esto permitió testear modelos propuestos para las velocidades de
reacción de las transformaciones microestructurales asociadas, determinar sus parámetros cinéticos y caracterizar su
influencia en el comportamiento visco-elástico, demostrando que el DMA es una buena herramienta para estudiar la
microestructura del material, la cinética de las transformaciones de fase y la influencia de las transformaciones en las
propiedades visco-elásticas de los materiales.
El principio de superposición de tiempo y temperatura ha sido aplicado con éxito, proporcionando curvas maestras para las
componentes del módulo elástico dinámico. Asimismo, se sugiere que el descenso en el límite elástico y la resistencia a
fatiga con la temperatura observado en algunas aleaciones de aluminio puede ser debido al incremento de la fricción
interna con la temperatura. Finalmente, se propone la existencia de una frecuencia umbral, por debajo de la cual los
materiales sometidos a cargas dinámicas exhiben una respuesta cuasi-estática y elástica, de tal modo que mecanismos
de termofluencia son dominantes y el deterioro del material debido a fatiga puede ser despreciado. Se propone un
procedimiento para estimar esta frecuencia de transición.
|
2 |
A rheological study of hyaluronan and sodium hydroxide at different concentrationsGentek, Natalia, Jöe, Melissa, Lindell, Sofia, Norgren, Karin, Sjövall, Ellen January 2018 (has links)
This thesis examines how the rheological properties change depending on the composition of hyaluronan, HA and sodium hydroxide, NaOH. This was performed to see if there was any relationship between the rheological properties of a sample depending on different compositions of HA and NaOH. Moreover, the fluidity of the samples was studied by investigating . Five concentrations of HA (11, 18, 20, 25, 33 wt%) were investigated with six concentrations of NaOH (0, 1, 2, 4, 6, 8 wt%). Rheology was used to determine rheological properties of the composition and the rheometric data was obtained from three different measurements: time sweep, frequency sweep and amplitude sweep. G', G'' andwere investigated but no clear correlation was found. However, some patterns were detected for frequency sweep and amplitude sweep. The graphs generally followed the same shape and the compositions with 11% HA generally had the lowest G' and G'' values. Additionally, the majority of the samples, that could be measured, could be defined as fluids, due to being higher than 1.
|
3 |
Effect of sonication on thermal, mechanical, and thermomechanical properties of epoxy resinSharma, Bed Prasad 01 December 2009 (has links)
Epoxy resin is an important engineering material in many industries such as electronics, automotive, aerospace, etc not only because it is an excellent adhesive but also because the materials based on it provide outstanding mechanical, thermal, and electrical properties. Epoxy resin has been proved to be an excellent matrix material for the nanocomposites when including another phase such as inorganic nanofillers. The properties of a nanocomposite material, in general, are a hybrid between the properties of matrix material and the nanofillers. In this sense, the thermal, mechanical, and electrical properties of a nanocomposite may be affected by the corresponding properties of matrix material. When the sonication is used to disperse the nanofillers in the polymer matrix, with the dispersal of the nanofillers, there comes some modification in the matrix as well and it finally affects the properties of nanocomposites. In this regard, we attempted to study the thermal, mechanical, and dynamic properties of EPON 862 epoxy resin where ultrasonic processing was taken as the effect causing variable. Uncured epoxy was subjected to thermal behavior studies before and after ultrasonic treatment and the cured epoxies with amine hardener EPICURE 3223 (diethylenetriamine) after sonications were tested for mechanical and dynamic properties. We monitored the ultrasonic processing effect in fictive temperature, enthalpy, and specific heat capacity using differential scanning calorimetry. Fictive temperature decreased whereas enthalpy and specific heat capacity were found to increase with the increased ultrasonic processing time. Cured epoxy rectangular solid strips were used to study the mechanical and dynamic properties. Flexural strength at 3% strain value measured with Dillon universal testing machine under 3-point bending method was found to degrade with the ultrasonic processing. The storage modulus and damping properties were studied for the two samples sonicated for 60 minutes and 120 minutes. Our study showed that the 60 minutes sonicated sample has higher damping or loss modulus than 120 minutes sonicated sample.
|
4 |
Fabrication and characterizations of hydrogels for cartilage repairKaur, Payal, Khaghani, Seyed A., Oluwadamilola, Agbabiaka, Khurshid, Z., Zafar, M.S., Mozafari, M., Youseffi, Mansour, Sefat, Farshid 26 September 2017 (has links)
Yes / Articular cartilage is a vascular tissue with limited repair capabilities, leaving an afflicted person in extreme pain. The tissue experiences numerous forces throughout its lifetime. This study focuses on development of a novel hydrogel composed of chitosan and β-glycerophosphate for articular cartilage repair. The aim of this study was to investigate the mechanical properties and swelling behaviour of a novel hydrogel composed of chitosan and β-glycerophosphate for cartilage repair. The mechanical properties were measured for compression forces. Mach-1 mechanical testing system was used to obtain storage and loss modulus for each hydrogel sample to achieve viscoelastic properties of fabricated hydrogels. Two swelling tests were carried out to compare water retaining capabilities of the samples. The hydrogel samples were made of five different concentrations of β-glycerophosphate cross-linked with chitosan. Each sample with different β-glycerophosphate concentration underwent sinusoidal compression forces at three different frequencies -0.1Hz, 0.316Hz and 1Hz. The result of mechanical testing was obtained as storage and loss modulus. Storage modulus represents the elastic component and loss modulus represents the viscosity of the samples. The results obtained for 1Hz were of interest because the knee experiences frequency of 1Hz during walking.
|
5 |
Rheological Properties of Protein HydrogelsScott, Shane 13 January 2012 (has links)
Certain hydrogel forming de novo proteins that utilize different crosslinking
methods are studied experimentally on a rheometer. The stress reaxation
modulus of CRC, a telechelic, triblock protein, is shown to be that of
a stretched exponential function with a value of β ≅ 0.5. The insertion of
an integrin binding domain and changes in pH within the range 6.5–8.5 are
shown not to significantly affect the resulting rheological behavior. A selective
chemical crosslinker is used on CRC hydrogel systems and is shown to
change the rheological behavior of the system to that of a combination of a
chemically and physically crosslinked system. Chemically crosslinked hydrogels
composed of W6, a wheat gluten-based protein, demonstrate a storage
modulus weakly dependent on the angular frequency that is much greater
than the loss modulus, with a modulus concentration dependence of c^9/4.
|
6 |
Rheological Properties of Protein HydrogelsScott, Shane 13 January 2012 (has links)
Certain hydrogel forming de novo proteins that utilize different crosslinking
methods are studied experimentally on a rheometer. The stress reaxation
modulus of CRC, a telechelic, triblock protein, is shown to be that of
a stretched exponential function with a value of β ≅ 0.5. The insertion of
an integrin binding domain and changes in pH within the range 6.5–8.5 are
shown not to significantly affect the resulting rheological behavior. A selective
chemical crosslinker is used on CRC hydrogel systems and is shown to
change the rheological behavior of the system to that of a combination of a
chemically and physically crosslinked system. Chemically crosslinked hydrogels
composed of W6, a wheat gluten-based protein, demonstrate a storage
modulus weakly dependent on the angular frequency that is much greater
than the loss modulus, with a modulus concentration dependence of c^9/4.
|
7 |
Rheological Properties of Protein HydrogelsScott, Shane 13 January 2012 (has links)
Certain hydrogel forming de novo proteins that utilize different crosslinking
methods are studied experimentally on a rheometer. The stress reaxation
modulus of CRC, a telechelic, triblock protein, is shown to be that of
a stretched exponential function with a value of β ≅ 0.5. The insertion of
an integrin binding domain and changes in pH within the range 6.5–8.5 are
shown not to significantly affect the resulting rheological behavior. A selective
chemical crosslinker is used on CRC hydrogel systems and is shown to
change the rheological behavior of the system to that of a combination of a
chemically and physically crosslinked system. Chemically crosslinked hydrogels
composed of W6, a wheat gluten-based protein, demonstrate a storage
modulus weakly dependent on the angular frequency that is much greater
than the loss modulus, with a modulus concentration dependence of c^9/4.
|
8 |
Rheological Properties of Protein HydrogelsScott, Shane January 2012 (has links)
Certain hydrogel forming de novo proteins that utilize different crosslinking
methods are studied experimentally on a rheometer. The stress reaxation
modulus of CRC, a telechelic, triblock protein, is shown to be that of
a stretched exponential function with a value of β ≅ 0.5. The insertion of
an integrin binding domain and changes in pH within the range 6.5–8.5 are
shown not to significantly affect the resulting rheological behavior. A selective
chemical crosslinker is used on CRC hydrogel systems and is shown to
change the rheological behavior of the system to that of a combination of a
chemically and physically crosslinked system. Chemically crosslinked hydrogels
composed of W6, a wheat gluten-based protein, demonstrate a storage
modulus weakly dependent on the angular frequency that is much greater
than the loss modulus, with a modulus concentration dependence of c^9/4.
|
9 |
Simplified Model for Rubber Friction to Study the Effect of Direct and Indirect DMA Test ResultsKelly, Michael J. 09 August 2021 (has links)
No description available.
|
10 |
Rheological Properties and Decomposition Rates of Gellan GumDhameri, Sulaiman Ali A. 04 September 2019 (has links)
No description available.
|
Page generated in 0.0745 seconds