Return to search

Módulos de suavidade e relações com K-funcionais / Moduli of smoothness and relations with K-functional

Neste trabalho, primeiramente, exploramos certos módulos de suavidade e K - funcionais definidos na esfera unitária m - dimensional e suas propriedades, dando prioridade a suas equivalências assintóticas e comparação com o erro de melhor aproximação. Uma das principais referências utilizadas foi (DAI; XU, 2010). Posteriormente, consideramos um módulo de suavidade e um K-funcional em espaços mais gerais, os espaços compactos 2-homogêneos, classe de espaços esta que contém a classe das esferas. A relação entre estes objetos e o raio de aproximação do operador translação (translação esférica, no contexto esférico) foi estudada. As principais referências foram (PLATONOV, 2009) e (PLATONOV, 1997). / In this work, we firstly explored certain moduli of smoothness and K - functionals defined on the m-dimensional unit sphere and their properties, mainly their asymptotic equivalence and relation to the best approximation error. The main reference is (DAI; XU, 2010). Later we consider a moduli of smoothness and a K-functional on a general setting, namely two-point homogeneous spaces, which has the unit spheres as one of its classes. Relations between those tools and the rate of approximation of the shiffting operator were studied. The main references here were (PLATONOV, 2009) and (PLATONOV, 1997).

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07122017-145058
Date30 August 2017
CreatorsCristiano dos Santos
ContributorsThaís Jordão, Dimitar Kolev Dimitrov, Valdir Antonio Menegatto, Sergio Antonio Tozoni
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds