Return to search

Technologies and design methods for a highly integrated AIS transponder / Teknologier och design metoder för en högintegrerad AIS transponder

The principle of universal shipborne automatic identification system (AIS) is to allow automatic exchange of shipboard information between one vessel and another. Saab TransponderTech AB has an operating AIS transponder on the market and the purpose of this report is to investigate alternative technologies that could result in a highly integrated replacement for the existing hardware. Design aspects of a system-on-chip are discussed, such as: available system-on- chip technologies, intellectual property, on-chip bus structures and development tools. This information is applied to the existing hardware and the integration possibilities of the various parts of the AIS transponder is investigated. The focus will be on two main transponder parts that are possible to replace with highly integrated circuits. The first of these parts is the so-called digital part where system-on-chip platforms for different technologies have been investigated with a special interest in a highly integrated FPGA implementation. The second part is the radio frequency receivers where alternatives to the existing superheterodyne receiver are discussed. The conclusion drawn is that there exist technologies for developing a highly integrated AIS transponder. An attractive highly integrated transponder could consist of a FPGA system-on-chip platform with subsampling digital receivers and additional components that are unsuitable for integration.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-2006
Date January 2003
CreatorsRamquist, Henrik
PublisherLinköpings universitet, Institutionen för systemteknik, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLiTH-ISY-Ex, ; 3522

Page generated in 0.0015 seconds