Return to search

Numerical study for heat and mass transfer of silicon dioxide layer chemical vapor deposition process in a rectangular chamber

This study employed a commercial code FLUENT to simulate a chemical vapor deposition process in a rectangular chamber for deposition of a silicon dioxide layer on a rectangular substrate. We focus on the deposition rate and heat transfer coefficient (Nu number) on the substrate surface. We discuss the effects of the size of inlet region, the distance from inlet to substrate, the size of outlet region, the Reynolds number, the temperature of substrate, the ratio of the inlet flow rates of the two reaction gases on the deposition rate.
The results show that the four corners at the substrate has the lowest deposition rate no matter how the variables are changed. Near the four corners there exist a region with high deposition rate. The deposition rate is more uniform when inlet is larger or equal to the substrate, and when the distance between the inlet and the substrate is small. The larger the size of the outlet region, the larger the uniform deposition rate region present on the central part of the substrate. The deposition rate increases with increasing Re number. However the uniformity remains similarly. The deposition rate also increases with increasing the substrate temperature. A study of the inlet flow rate ratio of TEOS and indicates that TEOS flow rate governs the process. A proper flow rate ratio gives a better deposition rate.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0811105-194943
Date11 August 2005
CreatorsChiou, Bo-ching
ContributorsRen-jr Huang, Ru-Yang, Pei-shiue Wu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0811105-194943
Rightscampus_withheld, Copyright information available at source archive

Page generated in 0.002 seconds