Return to search

Synthesis and Characterization of Linear and Crosslinked  Mono-Sulfonated Poly(arylene ether sulfone)s for  Reverse Osmosis Applications

Sulfonated poly(arylene ether sulfone)s can exhibit several ideal features as potential desalination membranes for reverse osmosis applications, including chlorine resistance, low surface fouling, and high water flux. However, this class of polymer membranes has suffered from two major drawbacks that jeopardize effective levels of salt rejection in order to achieve high water flux. In mixed salt feed sources, monovalent salt rejection decreases when divalent cations such as Ca2+ bind with the anionic sulfonate groups to cause charge screening, and this can lead to too much salt passage for the membranes to be competitive with interfacially produced polyamides. Sulfonate fixed charge concentration must be high enough for sufficient membrane water uptake to obtain high membrane water flux, but if the water uptake is too high, this permits increased salt passage. The research described in this dissertation attempts to address both of these challenges through the design of a sulfonated monomer that strategically spaces the ionic groups along the polymer backbone chains to inhibit divalent ion binding. Free radical crosslinking further tunes the hydrated free volume in the RO membranes.

A mono-sulfonated comonomer, sodium 3-sulfonate-4,4'-dichlorodiphenylsulfone (ms-DCDPS), was synthesized by stoichiometrically controlled electrophilic aromatic sulfonation of 4,4'-dichlorodiphenylsulfone (DCDPS). HPLC-UV revealed complete isolation of ms-DCDPS free of by-products after the 1st recrystallization and 1H NMR analysis confirmed the structure. A standard calibration curve was developed to accurately determine the leftover quantity of excess NaCl that was used for precipitation during the work-up procedures. A series of linear sulfonated poly(arylene ether sulfone)s with varying ms-DCDPS incorporation was synthesized. 1H NMR confirmed the structure of the polymers and size-exclusion chromatography confirmed that the intended molecular weights were achieved. The copolymers were cast into dense films and the mechanical and transport properties were measured in their fully hydrated states. Tensile tests revealed mechanically robust, tough membranes with glassy elastic moduli and high strains at break. The dense membrane prepared from sulfonated poly(arylene ether sulfone) with 51% of the repeat units sulfonated had NaCl rejection = 99.3% measured at 400 psi and 2000 ppm NaCl with a water permeability coefficient of 0.57 x 10-6 cm2/s. The salt rejection remained greater than 99% when a mixed salt feed source containing Ca2+ in the 0-200 ppm range together with the 2000 ppm NaCl was introduced.

Crosslinked mono-sulfonated oligomers were synthesized with targeted molecular weights by utilizing stoichiometric quantities of monomers with the desired degrees of sulfonation, and the endgroups were functionalized with tetrafluorostryene. These end-functionalized sulfonated oligomers were crosslinked by both thermal and UV free radical methods in the presence of initiators without any additional crosslinking agents. Reaction conditions were thoroughly investigated and optimized to produce highly crosslinked membranes that yielded gel fractions greater than 87%, as measured by solvent extraction in dimethylacetamide. The hydrated crosslinked membranes were tested for both mechanical and transport properties, and the results were compared to their linear membrane counterparts. Crosslinking decreased the hydrated free volume and reduced water uptakes when compared to linear sulfonated membranes. Tensile tests of the fully hydrated crosslinked membranes showed good mechanical properties. The transport properties of a dense UV crosslinked membrane prepared with a 10,000 g/mol oligomer having 50% of the repeat units sulfonated was tested under RO cross-flow conditions at 400 psi and 2000 ppm NaCl in the feed. The membrane demonstrated a salt rejection = 98.4% with a water permeability coefficient of 0.49 x 10-6 cm2/s. / Doctor of Philosophy / Billions of individuals across the world lack clean, affordable drinking water, and the unavailability of fresh drinking water can be attributed to both physical and economic reasons. Several techniques have been utilized to produce potable water for human consumption that include both water desalination and recycling procedures. Water desalination is a process that allows for purifying salt contaminated water into drinking water. The two major desalination processes involve either distillation or passage through polymer membranes. Distillation separates water from salt by heating liquid water to form a gas, and collecting the vapor as condensate while impurities remain in the heated bulk material. Polymer membranes separate impurities through filtration where membranes allow water to pass through a physical barrier while rejecting the unwanted contaminants, including salt.

Reverse osmosis desalination is the most common membrane separation process. Reverse osmosis membranes are comprised of either short-chain crosslinked oligomers or long-chain linear polymers. Commercial reverse osmosis membranes are largely poly(amide)s where a thin film is formed in an interfacial reaction. The membranes allow for almost quantitative salt rejection with high water fluxes. But, these membranes degrade over time from periodic cleaning with chlorine disinfectants.

This dissertation primarily focuses on the implementation of an alternative polymer membrane material known as a mono-sulfonated polysulfone that strategically distributes the fixed sulfonate charged groups along the polymer backbone. Theses reverse osmosis mono-sulfonated polysulfones display comparable salt rejection with better chemical resistance than commercial poly(amide)-based membranes, and could potentially offer a replacement in the market.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/104171
Date21 January 2020
CreatorsSchumacher, Trevor Ignatius
ContributorsChemistry, Riffle, Judy S., Lesko, John J., Freeman, Benny Dean, Edgar, Kevin J., Schulz, Michael
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0026 seconds