Return to search

Development and Plasticity of The Retinocollicular Projection

Brain development and function depend on intrinsic and extrinsic factors. In particular, the proper functioning of sensory systems can be altered according to the quality of extrinsic sensory information received during life. In this context, questions concerning neuroplasticity take on special relevance when considering that sensory experience has a big impact on the degree of plasticity of the brain. In this thesis, we have sought to understand how visual deprivation affects the development and maintenance of visual centers in the brain and the role of visual deprivation on plasticity throughout life. We have addressed this question by studying the retinocollicular projection, which is the neuronal pathway that connects the retina with a visual input processing center, the superior colliculus (SC). Unexpectedly, we found that in Syrian hamsters (Mesocricetus auratus) the size of receptive fields (RFs) of neurons in the SC is plastic in adult animals if they have been deprived of a minimum of visual experience when juveniles. Specifically, dark-reared (DR) hamsters refine SC RFs as do their normally-reared counterparts, but they lose RF refinement if they remain in the dark after their RFs get refined. We found that a well defined period and duration of visual experience can stabilize RF size in adulthood. Furthermore, we sought to investigate the mechanisms by which RF size is increased in adult DR hamsters. By testing the strength of intracollicular inhibition using electrophysiological and molecular techniques, we have found that visually-deprived animals have weaker inhibitory circuitry in their SC than normal animals. The quantity of GABA receptors and GABA containing neurons is decreased in the SC of adult DR animals. We propose that these results explain at least in part the RF enlargement we find in visually-deprived animals. Knowledge from this study provides general insight into sensory system plasticity in adulthood and new information about visual system development that is relevant for treatments of diseases.

Identiferoai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:biology_diss-1042
Date29 October 2008
CreatorsCarrasco, Maria Magdalena
PublisherDigital Archive @ GSU
Source SetsGeorgia State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceBiology Dissertations

Page generated in 0.0019 seconds