Return to search

Comparative Study of the Combined Performance of Learning Algorithms and Preprocessing Techniques for Text Classification

With the development in the area of machine learning, society has become more dependent on applications that build on machine learning techniques. Despite this, there are extensive classification tasks which are still performed by humans. This is time costly and often results in errors. One application in machine learning is text classification which has been researched a lot the past twenty years. Text classification tasks can be automated through the machine learning technique supervised learning which can lead to increased performance compared to manual classification. When handling text data, the data often has to be preprocessed in different ways to assure a good classification. Preprocessing techniques have been shown to increase performance of text classification through supervised learning. Different processing techniques affect the performance differently depending on the choice of learning algorithm and characteristics of the data set.   This thesis investigates how classification accuracy is affected by different learning algorithms and different preprocessing techniques for a specific customer feedback data set. The researched algorithms are Naïve Bayes, Support Vector Machine and Decision Tree. The research is done by experiments with dependency on algorithm and combinations of preprocessing techniques. The results show that spelling correction and removing stop words increase the accuracy for all classifiers while stemming lowers the accuracy for all classifiers. Furthermore, Decision Tree was most positively affected by preprocessing while Support Vector Machine was most negatively affected. A deeper study on why the preprocessing techniques affected the algorithms in such a way is recommended for future work. / I och med utvecklingen inom området maskininlärning har samhället blivit mer beroende av applikationer som bygger på maskininlärningstekniker. Trots detta finns omfattande klassificeringsuppgifter som fortfarande utförs av människor. Detta är tidskrävande och resulterar ofta i olika typer av fel. En  uppgift inom maskininlärning är textklassificering som har forskats mycket i de senaste tjugo åren. Textklassificering kan automatiseras genom övervakad maskininlärningsteknik vilket kan leda till effektiviseringar jämfört med manuell klassificering. Ofta måste textdata förbehandlas på olika sätt för att säkerställa en god klassificering. Förbehandlingstekniker har visat sig öka textklassificeringens prestanda genom övervakad inlärning. Olika förbetningstekniker påverkar prestandan olika beroende på valet av inlärningsalgoritm och egenskaper hos datamängden.  Denna avhandling undersöker hur klassificeringsnoggrannheten påverkas av olika inlärningsalgoritmer och olika förbehandlingstekniker för en specifik datamängd som utgörs av kunddata. De undersökta algoritmerna är naïve Bayes, supportvektormaskin och beslutsträd. Undersökningen görs genom experiment med beroende av algoritm och kombinationer av förbehandlingstekniker. Resultaten visar att stavningskorrektion och borttagning av stoppord ökar noggrannheten för alla klassificerare medan stämming sänker noggrannheten för alla. Decision Tree var dessutom mest positivt påverkad av de olika förbehandlingsmetoderna medan Support Vector Machine påverkades mest negativt. En djupare studie om varför förbehandlingsresultaten påverkat algoritmerna på ett sådant sätt rekommenderas för framtida arbete.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-241435
Date January 2018
CreatorsGrancharova, Mila, Jangefalk, Michaela
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:455

Page generated in 0.0022 seconds