Multi-Task Learning is today an interesting and promising field which many mention as a must for achieving the next level advancement within machine learning. However, in reality, Multi-Task Learning is much more rarely used in real-world implementations than its more popular cousin Transfer Learning. The questionis why that is and if Multi-Task Learning outperforms its Single-Task counterparts. In this thesis different Multi-Task Learning architectures were utilized in order to build a model that can handle labeling real technical issues within two categories. The model faces a challenging imbalanced data set with many labels to choose from and short texts to base its predictions on. Can task-sharing be the answer to these problems? This thesis investigated three Multi-Task Learning architectures and compared their performance to a Single-Task model. An authentic data set and two labeling tasks was used in training the models with the method of supervised learning. The four model architectures; Single-Task, Multi-Task, Cross-Stitched and the Shared-Private, first went through a hyper parameter tuning process using one of the two layer options LSTM and GRU. They were then boosted by auxiliary tasks and finally evaluated against each other.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-172257 |
Date | January 2020 |
Creators | Tovedal, Sofiea |
Publisher | Umeå universitet, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UMNAD ; 1226 |
Page generated in 0.0016 seconds