Return to search

Effects of Support Structure Geometry on SLM Induced Residual Stresses in Overhanging Features

Selective laser melting (SLM) is a new and rapidly developing manufacturing method for producing full-density, geometrically complex metal parts. The SLM process is time and cost effective for small-scale production; however, wide-spread adoption of this technique is severely limited by residual stresses that can cause large deformations and in-process build failures. The issues associated with residual stress accumulation are most apparent in parts with overhanging features. Due to the complexity of the SLM process, the accumulation of residual stresses is difficult to assess a priori. The deformations and in-process failures caused by residual stress accumulation often lead to an expensive and time consuming iterative manufacturing process.
To aid in the development of general SLM design guidelines for overhanging features, the effect of varying two support structure design parameters on residual stress accumulation were investigated. A part-scale thermo-mechanical finite element model was implemented using Diablo, a multi-physics finite element code developed by Lawrence Livermore National Laboratory (LLNL), and trends observed in the model were validated experimentally.
By comparing the distribution and magnitude of residual stresses, it was determined that reducing cooling rate gradients in overhanging features reduces the resulting residual stresses. Additionally, it was shown that volume effective material properties can be used to reduce computational costs in computational models of the SLM process.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3057
Date01 September 2017
CreatorsBaskett, Ryan
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0019 seconds