Return to search

Rela??o entre morfologia e dieta e uso da macroinfauna por pampos Trachinotus carolinus e Trachinotus goodei (Actinopterygii, Carangidae) em duas praias arenosas do sudeste do Brasil / Relationship between morphology and diet and the use of the macroinfauna by pompanos Trachinotus carolinus and Trachinotus goodei (Actinopterygii, Carangidae) in two sandy beaches in Southeastern Brazil.

Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2018-08-21T13:55:57Z
No. of bitstreams: 1
2010 - Joaquim Neto de Sousa Santos.pdf: 1864983 bytes, checksum: e70ed9f5ee68c8f365819e496dbb0176 (MD5) / Made available in DSpace on 2018-08-21T13:55:57Z (GMT). No. of bitstreams: 1
2010 - Joaquim Neto de Sousa Santos.pdf: 1864983 bytes, checksum: e70ed9f5ee68c8f365819e496dbb0176 (MD5)
Previous issue date: 2010-05-21 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico, CNPq, Brasil. / Morphodynamism, extratification and seasonality are among the main factor to influence
the composition and abundance of the macroinfauna in sandy beaches. The macroinfauna
of two sandy beaches were sampled between winter-2005 and summer-2006 during low
tide; one beach was protected (Flamengo beach) located in Guanabara bay, and the other
was exposed to waves in the oceanic zone (Grumari beach). The hypothesis that the
physical characteristics of the beaches determine the difference in composition and relative
abundance of the macroinfauna was tested. Flamengo beach was characterized as
dissipative and had comparatively higher t?xon richenes and lower biomass, when
compared with Grumari beach that was classsified as reflective. In Flamengo beaches,
higher abundance was recordded for Enoploides sp, and Emerita brasiliensis, whereas in
Grumari beach Sacocirrus sp and E. brasiliensis were the most abundant taxons. The
beaches showed highe dissimilarity in composition and relative abundance of the taxons
(91.75%). Sacocirrus sp, Enoploides sp, Dispio uncinata, Scolelepis goodbobyi and E.
brasiliensis explained 63.70% of the dissimilarity between the two beaches. In both
beaches, we observed extratification in occurence and abundance of the macroinfauna in
two seasons. Emerita brasiliensis occurred mainly in Grumary beach in the extrate 1 and
Sacocirrus sp in extrate 2, while in Flamengo beach E. brasiliensis and Enoploides sp had
the highest abundance in extrate 1 and S. goodbody and D. uncinata in extrate 3. The
hypothesis that the macrofauna differs among extrate and beaches was accepted and the
differences in composition and relative abundance of the macroinfauna were attributed to
morphodynamism, althought other environmental factores can be influencing such
differences. / O morfodinamismo, estratifica??o e a sazonalidade s?o os fatores mais importantes na
determina??o da composi??o e abund?ncia da macroinfauna em praias arenosas. A
macroinfauna de duas praias foi amostrada no inverno/2005 e ver?o/2006 durante a mar?
baixa, sendo uma praia protegida (Flamengo) localizada na ba?a de Guanabara, e outra
praia exposta localizada na zona oce?nica (Grumari). Foi testada a hip?tese que as
caracter?sticas f?sicas das praias determinam diferen?as na composi??o e abund?ncia da
macroinfauna. A praia do Flamengo foi caracterizada como dissipativa e apresentou maior
riqueza de t?xons, e menor biomassa, quando comparada com a praia de Grumari
classificada como refletiva. Na praia do Flamengo as maiores abund?ncias foram
registradas para Enoploides sp, e Emerita brasiliensis, enquanto em Grumari foram
Sacocirrus sp e E. brasiliensis. As praias apresentaram elevada dissimilaridade na
composi??o e abund?ncia relativa dos t?xons (91.75%), Sacocirrus sp, Enoploides sp,
Dispio uncinata, Scolelepis goodbobyi e E. brasiliensis explicaram 63.70% das diferen?as
entre as praias. Em ambas as praias foram observadas estratifica??es na ocorr?ncia e
abund?ncia da macroinfauna nas duas esta??es analisadas. Na praia de Grumari, E.
brasiliensis ocorreu principalmente no estrato 1 e Sacocirrus sp no estrato 2, enquanto na
praia do Flamengo E. brasiliensis e Enoploides sp apresentaram as maiores abund?ncias no
estrato 1 e S. goodbodyi e D. uncinata no estrato 3. A hip?tese da varia??o na composi??o
da macroinfauna entre os extratos foi aceita, e as diferen?as observadas na composi??o e
abund?ncia da macroinfauna foram atribu?das ao morfodinamismo; no entanto, outros
fatores ambientais podem estar relacionados com tais diferen?as.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/2357
Date21 May 2010
CreatorsSantos, Joaquim Neto de Sousa
ContributorsAra?jo, Francisco Gerson, Joyeux, Jean Christophe, Paiva, Paulo Cesar de, Coutinho, Ricardo, Esb?rard, Carlos Eduardo Lustosa
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Bilogia Animal, UFRRJ, Brasil, Instituto de Ci?ncias Biol?gicas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
RelationABRAMOFF, M. D.; MAGELHAES, P.J. & RAM, S.J. 2004. "Image processing with ImageJ". Biophotonics Inter. 11: 36-42. ADITE, A.; WINEMILLER, K.O & FIOGBE, E. D.. 2005. Ontogenetic, seasonal, and spatial variation in the diet of Heterotis niloticus (Osteoglossiformes: Osteoglossidae) in the S? River and Lake Hlan, Benin, West Africa. Environmental Biology of Fishes, 73: 367-378. ARMITAGE, T.M & ALEVIZON, W.S. 1980. The diet of the Florida pompano (Trachinotus carolinus) along the east coast of central Florida. Florida Scientist 43(1): 19-26. BATISTIC, M.; TUTMAN, P. P.; BOJANIC, D.; SKARAMUCA, B, KOZUL, V, GLAVIC & BARTULOVIC, V. 2005. Diet and diel feeding activity of juvenile pompano (Trachinotus ovatus) (Teleostei: Carangidae) from the southern Adriatic, Croatia. Journal of the Marine Biological Association of the United Kingdom, 85: 1533-1534. BELINDA M.S.; WARD-CAMPBELL, F. & WILLIAM H. B. 2005. Ontogenetic changes in morphology and diet in the snakehead, Channa limbata, a predatory fish in western Thailand. Environmental Biology of Fishes, 72: 251?257. BELLINGER, J.W & AVAULT J.W. 1971. Food habits of juvenile pompano (Trachinotus carolinus) in Louisiana. Transactions of the American Fisheries Society 99: 486-494. BLAKE, R. W. 2004. Fish functional design and swimming performance. Journal of Fish Biology. 65: 111-119. CHERVINSKI, J. & ZORN, M. 1977. Note on occurrence and the food of juvenile kachlan (Trachinotus ovatus; Pisces, Carangidae) from the Mediterranean. Aquaculture, 10: 175-185. ERZINI, K.; GON?ALVES, J.M.S.; BENTES, L. & LINO, P.G. 1997. Fish mouth dimensions and size selectivity in a portuguese longline fishery. Journal of Applied Ichthyology 3 (1): 41-44. FISHER, R & HOGAN, J. D. 2007. Morphological predictors of swimming speed: a case study of pre-settlement juvenile coral reef fishes. Journal of Experimental Biology, 210: 2436-2443. FISHER, R.; LEIS, J.M.; CLARK, D.L. & WILSON, S.K. 2005. Critical swimming speeds of late-stage coral reef fish larvae: variation within species, among species and between locations. Marine Biology, 147: 1201?1212. 81 FISHER, R. & BELLWOOD, D. R. 2003. Undisturbed swimming behaviour and nocturnal activity of coral reef fish larvae. Marine Ecology Progress Series. 263: 177-188. FIELDS, H.M. 1962. Pompanos (Trachinotus spp.) of south Atlantic coast of the United States. U.S. Fish and Wildlife Service Fishery Bulletin 207(62): 189-222. FIGUEIREDO, N & MENEZES, J. 1980: Manual de peixes marinhos do sudeste do Brasil: V. Teleostei (4). Mus. Zool. Universidade de S?o Paulo, Brasil, 105 pp. FINUCANE, J. H. 1969. Ecology of the pompano (Trachinotus carolinus) and the permit (Trachinotus falcatus) in Florida. Transactions of the American Fisheries Society 98: 478-486. FUGI, R.; AGOSTINHO, A. A. & HAHN, N. S. 2001. Trophic morphology of five benthic-feeding fish species of a tropical floodplain. Revista Brasileira de Biologia, S?o Carlos, 61(1): 27-33. FULTON, C.J.; BELLWOOD, D.R. & WAINWRIGHT, P.C., 2001. The relationship between swimming ability and habitat use in wrasses (Labridae). Marine Biology. 139: 25?33. FULTON, C.J. & BELLWOOD, D.R. 2004. Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Marine Biology. 144: 429?437. GARC?A-BERTHOU, E. 2002. Ontogenetic diet shifts and interrupted piscivory in introduced largemouth bass (Micropterus salmoides). International Review of Hydrobiology, 87: 353-363. GALAROWICZ, T.L.; ADAMS, J.A. & WAHL, D.H. 2006. The influence of prey availability on ontogenetic diet shifts of a juvenile piscivore. Canadian Journal Fishery Aquatic Scince. 63: 1722?1733. GATZ JR., A.J. 1979a. Community organization in fishes as indicated by morphological features. Ecology 60(4): 711-718. GILBERT, C. & PARSONS, J. 1986. Species profile: life histories and environmental requirements of coastal fishes and invertebrates (South Florida): Florida pompano. U.S. Fish and Wildlife Report 82(11 - 42). GRIFFITHS, D. 1975. Prey availability and food of predators. Ecology 56: 1209-1214. HOUDE, E.D. 1997. Patterns and consequences of selective processes in teleost early life histories. In: CHAMBERS, C.; TRIPPEL, E.A. (Ed.). Early life history and recruitment in fish populations. London: Chapman & Hall, P. 173- 196. 82 HJELM J.; SVANB?CK R.; BYSTR?M P.; PERSSON, L. & WAHLSTR?M E. (2001) Diet dependent body morphology and ontogenetic reaction norms in a juvenile omnivore. Oikos 95:311?323. HYNES, H.B.N. 1950. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. Journal Animal Ecology. 19: 36-57. HYSLOP, E.J. 1980. Stomach contents analysis - a review of methods and their application. Journal of Fish Biology. 17: 411-429. HYNDES, G.A. & POTTER, I.C. 1997. Age, growth and reproduction of Sillago schomburgkii in nearshore waters and comparisons of life history strategies of a suite of Sillago species. Environmental Biology of Fishes. 49(4):435-447. HURLBERT, S. H. 1978. The measurement of niche overlap and some relatives. Ecology, 59(1): 168-174. HUGUENY, B. & POUILLY, M. 1999. Morphological correlates of diet in an assemblage of West African freshwater fishes. Journal of Fish Biology, 54: 1310-1325. JOHANSSON, F, R?DMAN, P & ANDERSSON, J. 2006. The relationship between ontogeny, morphology, and diet in the Chinese hook snout carp (Opsariichthys bidens). Ichthyol Research (2006) 53: 63?69. KAHILAINEN, K.; ALAJ?RVI, E. & LEHTONEN, H. 2005. Planktivory and diet-overlap of densely rakered whitefish (Coregonus lavaretus) in a subarctic lake. Ecology of Freshwater Fish, 14: 50-58. KAHILAINEN, K. & LEHTONEN, H. 2003. Piscivory and prey selection of four predator species in a whitefish dominated subarctic lake. Journal of Fish Biology. 63:59-672. KEENLEYSIDE, M.H.A. 1979. Diversity and adaptation in fish behaviour. Springer, Berlin. KRUITWAGEN, N. G.; LUGENDO, I. B. R.; PRATAP, H. B. & WENDELAAR B. S. E. 2007. Influence of morphology and amphibious life-style on the feeding ecology of the mudskipper Periophthalmus argentilineatus. Journal of Fish Biology 71: 39?52. LABROPOULOU, M.; MACHIAS, A.; TSIMENIDES, N. & ELEFTHERIOU, A.. 1997. Feeding habits and ontogenetic diet shift of the striped red mullet, Mullus surmuletus Linnaeus, 1758. Fisheries Research 31: 257-267. LEGENDRE, P & LEGENDRE, L. 1998. Numerical ecology. Second English edition. Elsevier Science BV, Amsterdam, The Netherlands. LIVINGSTON, R. J. 1988. Inadequacy of species-level designations for ecological studies of coastal migratory fishes. Environmental Biology of Fishes 22: 225?234. 83 LUCZKOVICH, J. J.; NORTON, S. F. & GILMORE, G. 1995. The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropomus undecimalis. Environmental Biology of Fishes, 44:79- 95. MAKRAKIS, M.C.; NAKATANI, K.; BIALETZKI, A.; SANCHES, P.V.; G. BAUMGARTNER & GOMES, L.C. 2005. Ontogenetic shifts in digestive tract morphology and diet fish larvae of the Itaipu Reservoir, Brazil. Environmental Biology of Fishes 72: 99-107. MCGARIGAL, K.; CUSHMAN, S. & STAFFORD, S. 2000. Multivariate Statistics for Wildlife and Ecology Research. Springer-Verlag New York Inc., New York. 283 pp. MCCORMICK M. 1998. Condition and growth of reef fish at settlement: is it important? Aust. J. Ecol. 23:258?264. M?RIGOUX, S. & PONTON, D. 1998. Body shape, diet and ontogenetic diet shifts in young fish of the Suriname River, French Guiana, South America. Journal of Fish Biology 52: 556-569. MODDE, T. &. ROSS, S.T. 1983. Trophic relationships of fishes occuring within a surf zone habitat in the northern Gulf of Mexico. Northeast Gulf Scince. 6: 109-120. MOL, J. H. 1995. Ontogenetic diet shifts and diet overlap among three closely related neotropical armoured catfishes. Journal of Fish Biology, 47: 788-807. MORENO, T. & CASTRO, J.J. 1995. Community structure of the juvenile of coastal pelagic fish species in the Canary Islands waters. Scientia Marina, 59, 405-413. MOTTA, P.J.; CLIFTON, K.B.; HERNANDEZ, P.; EGGOLD, B.T.; GIORDANO, S.D. & WILCOX, R. 1995. Feeding relationships among nine species of seagrass fishes of Tampa Bay, Florida. Bull. Mar. Sci. 56: 185?200. MULLER, R.G; TISDEL, K & MURPHY, M.D. 2002. The update of the stock assessment of florida pompano (Trachinotus carolinus). Florida Fish and Wildlife Conservation Commission. Pp 143. NANAMI, A.; NISHIHIRA, M.; SUZUKI, T. & YOKOCHI, H. 2005. Species specific spatial variation of coral reef fishes in relation to habitat characteristics in an Okinawan coral reef. Environmental Biology of Fishes. 72, 55?65. NIANG, T. M. S.; PESSANHA, A. L. M & ARA?JO, F.G. 2010. Dieta de juvenis de Trachinotus carolinus (Actinopterygii, Carangidae) em praias arenosas na costa do Rio de Janeiro. Iheringia (in press). OLSON, M.H. 1996. Ontogenetic niche shifts in largemouth bass: variability and consequences for first-year growth. Ecology 77: 179-190. 84 POST, D. M. &. KITCHELL J. F. 1997. Trophic ontogeny and life history effects ON interactions between age-0 fishes and zooplankton. Archiv fur Hydrobiologie, Advances in Limnology 49:1?12. PINKAS, L. 1971, Food habits study. pp. 5-10. In: L. PINKAS, M. S. Oliphant, I. L. K. Iverson (eds.), Food habits of albacore bluefin tuna and bonito in California waters. Fishery Bulletin., 152: 1-105. PIET, G. J. 1998. Ecomorphology of a size-structured tropical freshwater fish community. Environmental Biology of Fishes 51: 67?86. POUILLY, M.; LINO, F. ; BRETENOUX, J.G. & ROSALES, C. 2003. Dietarymorphological relationships in a fish assemblage of the bolivian amazonian floodplain. Journal of Fish Biology. 62:1137-1158. SAMBLIAY, V.C. 1990. Interrelationships between swimming speed, caudal fin aspect ratio and body length of fishes. Fishbyte 8, 16?20. STONER, A. W. & LIVINGSTONE, R. J. 1984. Ontogenetic patterns in diet and feeding morphology in simpatric sparid fishes from seagrass meadows. Copeia 1: 174?187. SVANB?CK R. & EKL?V, P. 2003. Morphology dependent foraging efficiency in perch: a trade off for ecological specialization? Oikos 102:273?284. TER BRAAK, C. F. J. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167 ?1179. TER BRAAK, C. J. F. 1991. Update notes: CANOCO version 3.1 Wageningen, The Netherlands. TRACY L. GALAROWICZ, JULIE A. ADAMS & DAVID H. WAHL. 2006. The influence of prey availability on ontogenetic diet shifts of a juvenile piscivore. Canadian Journal Fishery Aquatic Scince. 63(8): 1722?1733. WERNER, E.E. & HALL, J.D. 1974. Optimal foraging and size selection of prey by the bluegill sunfish (Lepomis macrochirus), Ecology 55 (5): 1042-1052. VIDELER, J. J. (1993). Fish Swimming. London: Chapman & Hall. XUE, Y.; JIN, X. ; ZHANG, B. & LIANG, Z. 2005. Seasonal, diel and ontogenetic variation in feeding patterns of small yellow croaker in the central Yellow Sea. Journal of Fish Biology 67: 33-50. WAINWRIGHT, P.C. & B.A. RICHARD. 1995. Predicting patterns of prey use from morphology of fishes. Environmental Biology of Fishes, 44: 97-113. WAINWRIGHT P.C. 1991. Ecomorphology: experimental functional anatomy for ecological problems. Am. Zool., 31: 680?693. 85 WEBB, P. W. & WEIHS, D. 1986. Functional locomotor morphology of early life-history stages of fishes. Trans. Am. Fish. Soc. 115: 115-127. WERNER, E.E. & GILLIAM, J.F. 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15:393-425. WIKRAMANAYAKE, E.D. 1990. Ecomorphology and biogeography of a tropical stream fish assemblage: evolution of assemblage structure. Ecology 71(5):1756-1764. WINEMILLER, K.O. 1989. Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuela ilanos. Environmental Biology of Fishes 26: 177- 199. WINEMILLER, K.O. & KELSO-WINEMILLER, L.C. 2003. Food habits of tilapinae cichlids of the Upper Zambezi River and floodplains during the descending phase of the hydrological cycle. Journal of Fish Biology 63: 120-128. WOOTTON, R.J. Ecology of teleost fish. The Netherlands: Kluwer Academic Publishers, 1999. 386 p. ZAHORCSAK, P.; SILVANO, R. A. M. & SAZIMA, I. 2000. Feeding biology of a guild of benthivorous fishes in a sandy shore on south-eastern brazilian coast. Revista Brasileira de Biologia. 60 (3): 511-518.

Page generated in 0.004 seconds