Return to search

Evaluation of FLake’s Performance on Water Temperatures and Surface Heat Fluxes at Lake Erken, Sweden / Utvärdering av FLakes färdighet beträffande vattentemperatur och ytvärmeflöden vidden svenska sjön Erken

In many numerical weather prediction models, the presence of lakes is simulated crudely, with their effect being neglected in the resulting simulations. However, it has been shown how lakes effect not only their surrounding climate directly, but have an effect to the overall weather evolution and ecosystem. It is therefore vital to improve existing models to take lakes into account, by coupling with smaller models specificaly compiled for a reas with lakes. There have been several sophisticated models to parameterizelakes in a geographical area, which are, on the other hand, computationally expensive and time consuming. A model built specifically on simple physical assumptions, named FLake, aims to provide a solution that is not heavy computationally, but is accurate enough and contains all the necessary physics surrounding the heat budget and temperature of a given lake. For this project, FLake was tried on a lake close to Uppsala, named Erken, where the validity of the model was tested against data archives from Erken Laboratory’s measurement tower. The resulting simulations were very promising regarding the water temperatures, as well as giving out acceptable results for the surface heat fluxes above the lake and the duration of the ice period, as it was modeled by FLake and compared with ice data archives.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-380766
Date January 2019
CreatorsSavvakis, Vasileios
PublisherUppsala universitet, Luft-, vatten och landskapslära
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationExamensarbete vid Institutionen för geovetenskaper, 1650-6553 ; 453

Page generated in 0.0026 seconds