Return to search

Two-dimensional low-coherence interferometry for the characterization of nanometer wafer topographies

Within this work a scan-free, low-coherence interferometry approach for surface profilometry with nm-precision is presented. The basic setup consist of a Michelson-type interferometer which is powered by a supercontinuum light-source (Δλ = 400 - 1700 nm). The introduction of an element with known dispersion delivers a controlled phase variation which can be detected in the spectral domain and used to reconstruct height differences on a sample. In order to enable scan-free measurements, the interference signal is spectrally decomposed with a grating and imaged onto a two-dimensional detector. One dimension of this detector records spectral, and therefore height information, while the other dimension stores the spatial position of the corresponding height values.
In experiments on a height standard, it could be shown that the setup is capable of recording multiple height steps of 101 nm over a range of 500 µm with an accuracy of about 11.5 nm. Further experiments on conductive paths of a micro-electro-mechanical systems (MEMS) pressure sensor demonstrated that the approach is also suitable to precisely characterize nanometer-sized structures on production-relevant components. The main advantage of the proposed measurement approach is the possibility to collect precise height information over a line on a surface without the need for scanning. This feature makes it interesting for a production-accompanying metrology.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35105
Date30 August 2019
CreatorsTaudt, Ch., Baselt, T., Nelsen, B., Aßmann, H., Greiner, A., Koch, E., Hartmann, P.
PublisherSPIE
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1117/12.2227887

Page generated in 0.0023 seconds