Nous nous intéressons dans cette thèse, à l’étude des méthodes itératives pour la résolutiond’équations matricielles de grande taille : Lyapunov, Sylvester, Riccati et Riccatinon symétrique.L’objectif est de chercher des méthodes itératives plus efficaces et plus rapides pour résoudreles équations matricielles de grande taille. Nous proposons des méthodes itérativesde type projection sur des sous espaces de Krylov par blocs Km(A, V ) = Image{V,AV, . . . ,Am−1V }, ou des sous espaces de Krylov étendus par blocs Kem(A, V ) = Image{V,A−1V,AV,A−2V,A2V, · · · ,Am−1V,A−m+1V } . Ces méthodes sont généralement plus efficaces et rapides pour les problèmes de grande dimension. Nous avons traité d'abord la résolution numérique des équations matricielles linéaires : Lyapunov, Sylvester, Stein. Nous avons proposé une nouvelle méthode itérative basée sur la minimisation de résidu MR et la projection sur des sous espaces de Krylov étendus par blocs Kem(A, V ). L'algorithme d'Arnoldi étendu par blocs permet de donner un problème de minimisation projeté de petite taille. Le problème de minimisation de taille réduit est résolu par différentes méthodes directes ou itératives. Nous avons présenté ainsi la méthode de minimisation de résidu basée sur l'approche global à la place de l'approche bloc. Nous projetons sur des sous espaces de Krylov étendus Global Kem(A, V ) = sev{V,A−1V,AV,A−2V,A2V, · · · ,Am−1V,A−m+1V }. Nous nous sommes intéressés en deuxième lieu à des équations matricielles non linéaires, et tout particulièrement l'équation matricielle de Riccati dans le cas continu et dans le cas non symétrique appliquée dans les problèmes de transport. Nous avons utilisé la méthode de Newtown et l'algorithme MINRES pour résoudre le problème de minimisation projeté. Enfin, nous avons proposé deux nouvelles méthodes itératives pour résoudre les équations de Riccati non symétriques de grande taille : la première basée sur l'algorithme d'Arnoldi étendu par bloc et la condition d'orthogonalité de Galerkin, la deuxième est de type Newton-Krylov, basée sur la méthode de Newton et la résolution d'une équation de Sylvester de grande taille par une méthode de type Krylov par blocs. Pour toutes ces méthodes, les approximations sont données sous la forme factorisée, ce qui nous permet d'économiser la place mémoire en programmation. Nous avons donné des exemples numériques qui montrent bien l'efficacité des méthodes proposées dans le cas de grandes tailles. / In this thesis, we focus in the studying of some iterative methods for solving large matrix equations such as Lyapunov, Sylvester, Riccati and nonsymmetric algebraic Riccati equation. We look for the most efficient and faster iterative methods for solving large matrix equations. We propose iterative methods such as projection on block Krylov subspaces Km(A, V ) = Range{V,AV, . . . ,Am−1V }, or block extended Krylov subspaces Kem(A, V ) = Range{V,A−1V,AV,A−2V,A2V, · · · ,Am−1V,A−m+1V }. These methods are generally most efficient and faster for large problems. We first treat the numerical solution of the following linear matrix equations : Lyapunov, Sylvester and Stein matrix equations. We have proposed a new iterative method based on Minimal Residual MR and projection on block extended Krylov subspaces Kem(A, V ). The extended block Arnoldi algorithm gives a projected minimization problem of small size. The reduced size of the minimization problem is solved by direct or iterative methods. We also introduced the Minimal Residual method based on the global approach instead of the block approach. We projected on the global extended Krylov subspace Kem(A, V ) = Span{V,A−1V,AV,A−2V,A2V, · · · ,Am−1V,A−m+1V }. Secondly, we focus on nonlinear matrix equations, especially the matrix Riccati equation in the continuous case and the nonsymmetric case applied in transportation problems. We used the Newton method and MINRES algorithm to solve the projected minimization problem. Finally, we proposed two new iterative methods for solving large nonsymmetric Riccati equation : the first based on the algorithm of extended block Arnoldi and Galerkin condition, the second type is Newton-Krylov, based on Newton’s method and the resolution of the large matrix Sylvester equation by using block Krylov method. For all these methods, approximations are given in low rank form, wich allow us to save memory space. We have given numerical examples that show the effectiveness of the methods proposed in the case of large sizes.
Identifer | oai:union.ndltd.org:theses.fr/2015DUNK0434 |
Date | 23 May 2015 |
Creators | Sadek, El Mostafa |
Contributors | Littoral, Université Cadi Ayyad (Marrakech, Maroc). Faculté des sciences et techniques Guéliz, Jbilou, Khalid, Bentbib, Abdeslem Hafid |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0041 seconds