• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 1
  • Tagged with
  • 21
  • 21
  • 13
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'enjeu de la différentiation automatique dans les méthodes de Newton d'ordres supérieurs

Cotte, Romain January 2010 (has links)
Les méthodes plus avancées d'optimisation avec ou sans contraintes nécessitent le calcul des dérivées de la fonction. En ce sens, la différentiation automatique est devenue un outil primordial. Malgré le fait qu'il soit omniprésent, cet outil est encore en développement et en recherche. Il ne présente pas les inconvénients classiques des méthodes habituelles de dérivation mais reste complexe à utiliser. Ce travail consiste à utiliser un outil de différentiation permettant de calculer des dérivées d'ordres supérieurs afin d'obtenir des directions améliorées. Nous définirons d'abord de manière générale un type d'algorithme d'optimisation à l'aide des directions suffisamment descendantes. Leurs caractéristiques seront analysées pour modifier des méthodes de type Newton afin d'avoir une meilleure fiabilité de convergence. Nous étudierons les opérations critiques et l'ordre du coût de ces méthodes. Dans une deuxième partie, nous verrons les calculs d'algèbre linéaire requis pour nos algorithmes. Ensuite, nous présenterons le fonctionnement de la différentiation automatique et en quoi c'en est un outil indispensable à ce genre de méthode. Puis, nous expliquerons pourquoi nous avons choisi l'outil Tapenade pour la différentiation automatique et la librairie de Moré, Garbow, Hillstrom pour la collection de fonctions tests. Enfin, nous comparerons les méthodes de type Newton.
2

Existence de connexions homoclines pour l'équation du pont suspendu : une preuve assistée par ordinateur

Murray, Maxime January 2016 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2015-2016 / Dans ce mémoire, une méthode assistée numériquement est introduite et utilisée afin de montrer l'existence d'une connexion homocline à zéro pour l'équation du pont suspendu. Cette méthode, basée sur l'utilisation du théorème de contraction de Banach, permet d'obtenir les points fixes de l'opérateur de Newton légèrement modifié. La méthode ainsi que son cadre théorique sont introduits au premier chapitre. L'espace de Banach sur lequel sera définit l'opérateur ainsi que la manière de construire l'approximation de l'inverse utilisée pour l'opérateur sont les éléments majeurs du cadre théorique. Par la suite, la méthode est utilisée dans le Chapitre 2 pour prouver rigoureusement la validité de l'approximation numérique utilisée pour la variété stable locale. Puis cette approximation est réutilisée pour prouver l'existence de la connexion homocline. Cette preuve est à nouveau effectuée en utilisant la méthode introduite au premier chapitre. Finalement, certains résultats des calculs numériques sont présentés pour conclure ce mémoire. / In this work, a numerically assisted technique is introduced in order to prove the existence of a homoclinic connexion to zero for the suspension bridge equation. This technique, based on the use of the Banach fixed point theorem, can provide the fixed point of a slightly modified version of the Newton operator. The technique and its theorical background are introduced in the first chapter. The Banach space on which the operator is defined and the way to construct the approximation of the inverse needed to define the operator are the major parts of the theoretical background. The method is then used to rigorously validate the numerical approximation used to parametrize the local stable manifold. This parametrization is used to find the homoclinic connexion we are looking for. This proof is also completed using the technique from the first chapter. Finally, some results and numerical approximations will be presented in the last chapter.
3

Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique.

Khenous, Houari Boumediène 25 November 2005 (has links) (PDF)
La modélisation des problèmes de contact pose de sérieuses difficultés : conceptuelles, mathématiques et informatiques bien plus complexes que celles qui proviennent de la mécanique des structures linéaire classique. Motivés par le rôle fondamental que joue le contact dans les applications en calcul de structures, nous nous intéressons aux problèmes de contact unilatéral et frottement (statique et dynamique) en petites déformations. Cette thèse est consacrée à l'étude de certaines formulations et méthodes pour résoudre ce problème et se décompose en deux grandes parties. La première partie est consacrée à la présentation de la discrétisation hybride du problème de contact unilatéral avec frottement de Coulomb. Une formulation avec projection est étudiée et un résultat d'existence et d'unicité est donné pour le problème discret. Différentes méthodes de résolution sont présentées (Newton, méthode itérative, points fixes, Uzawa) et comparées en termes de nombre d'itérations et en termes de robustesse par rapport au coefficient de frottement. La deuxième partie concerne le problème de contact élastodynamique. Plusieurs schémas classiques d'intégration en temps (la θ-méthode, schéma de Newmark, point milieu) sont présentés dans cette partie. On donne aussi de nouvelles stratégies (schéma de Paoli et Schatzman, schéma avec la loi de contact équivalente, schéma avec la matrice de masse équivalente) pour venir à bout des difficultés rencontrées avec les schémas précédents. Cette dernière méthode nous permet de conserver l'énergie du problème et de montrer un résultat d'existence d'une solution lipschitzienne pour le problème de contact élastodynamique discret. Ces résultats sont validés par des simulations numériques.
4

Vérification formelle pour les méthodes numériques

Pasca, Ioana 23 November 2010 (has links) (PDF)
Cette thèse s'articule autour de la formalisation de mathématiques dans l'assistant à la preuve Coq dans le but de vérifier des méthodes numériques. Plus précisément, elle se concentre sur la formalisation de concepts qui apparaissent dans la résolution des systèmes d'équations linéaires et non-linéaires. <p> Dans ce cadre, on a analysé la méthode de Newton, couramment utilisée pour approcher les solutions d'une équation ou d'un système d'équations. Le but a été de formaliser le théorème de Kantorovitch qui montre la convergence de la méthode de Newton vers une solution, l'unicité de la solution dans un voisinage, la vitesse de convergence et la stabilité locale de la méthode. L'étude de ce théorème a nécessité la formalisation de concepts d'analyse multivariée. En se basant sur ces résultats classiques sur la méthode de Newton, on a montré qu'arrondir à chaque étape préserve la convergence de la méthode, avec une corrélation bien déterminée entre la précision des données d'entrée et celle du résultat. Dans un travail commun avec Nicolas Julien nous avons aussi formellement étudié les calculs avec la méthode de Newton effectués dans le cadre d'une bibliothèque d'arithmétique réelle exacte. <p> Pour les systèmes linéaires d'équations, on s'est intéressé aux systèmes qui ont une matrice associée à coefficients intervalles. Pour résoudre de tels systèmes, un problème important qui se pose est de savoir si la matrice associée est régulière. On a fourni la vérification formelle d'une collection de critères de régularité pour les matrices d'intervalles.
5

Les méthodes numériques de transport réactif

Sabit, Souhila 27 May 2014 (has links) (PDF)
La modélisation du transport réactif du contaminant en milieu poreux est un problème complexe cumulant les difficultés de la modélisation du transport avec celles de la modélisation de la chimie et surtout du couplage entre les deux. Cette modélisation conduit à un système d'équations aux dérivées partielles et algébriques dont les inconnues sont les quantités d'espèces chimiques. Une approche possible, déjà utilisée par ailleurs, est de choisir la méthode globale DAE : l'utilisation d'une méthode de lignes, correspondant à la discrétisation en espace seulement, conduit à un système différentiel algébrique (DAE) qui doit être résolu par un solveur adapté. Dans notre cas, on utilise le solveur IDA de Sundials qui s'appuie sur une méthode implicite, à ordre et pas variables, et qui requiert à chaque pas de temps la résolution d'un grand système non linéaire associé à une matrice jacobienne. Cette méthode est implémentée dans un logiciel qui s'appelle GRT3D (Transport Réactif Global en 3D). Le présent travail présente une amélioration de la méthode GDAE, du point de vue de la performance, de la stabilité et de la robustesse. Nous avons ainsi enrichi les possibilités de GRT3D, par la prise en compte complète des équations de précipitation-dissolution permettant l'apparition ou la disparition d'une espèce précipitée. En complément de l'étude de la méthode GDAE, nous présentons aussi une méthode séquentielle non itérative (SNIA), qui est une méthode basée sur le schéma d'Euler explicite : à chaque pas de temps, on résout explicitement l'équation de transport et on utilise ces calculs comme données pour le système chimique, résolu dans chaque maille de façon indépendante. Nous présentons aussi une comparaison entre cette méthode et l'approche GDAE. Des résultats numériques pour deux cas tests, celui proposé par l'ANDRA (cas-test 2D) d'une part, celui proposé par le groupe MoMas (Benchmark "easy case") d'autre part, sont enfin présentés, commentés et analysés.
6

Profilométrie optique par méthodes inverses de diffraction électromagnétique

Arhab, Slimane 02 October 2012 (has links)
La profilométrie optique est une technique de métrologie de surface rapide et non destructive. Dans ce mémoire, nous avons abordé cette problématique par des méthodes inverses de diffraction électromagnétique et dans une configuration de type Microscopie Tomographique Optique par Diffraction (ODTM). La surface est sondée par un éclairement sous plusieurs angles d'incidences ; la mesure en amplitude et en phase du champ lointain diffracté constitue les données du problème. Des profils de surfaces ont été reconstruits en considérant différents modèles de diffraction, parmi lesquelles une méthode approchée fondée sur les approximations de diffusion simple et de paraxialité. La résolution latérale de cette méthode et des techniques classiques de profilométrie est limitée par le critère d'Abbe-Rayleigh, défini sur la base de l'ouverture numérique pour l'éclairement et la détection du champ. Afin de dépasser cette limite de résolution, nous avons développé une méthode itérative de Newton-Kantorovitch régularisée. L'opérateur de diffraction y est rigoureusement modélisé par une méthode des moments, résolution numérique des équations du formalisme intégral de frontière, et l'expression de la dérivée de Fréchet de cet opérateur est obtenue par la méthode des états adjoints, à partir du théorème de réciprocité. Pour les surfaces unidimensionnelles métalliques, notre technique permet d'inverser à partir de données synthétiques des surfaces très rugueuses avec une résolution au delà du critère d'Abbe-Rayleigh. / Optical profilometry is a nondestructive and fast noncontact surface metrology technique. In this thesis, we have tackled this issue with inverse scattering electromagnetic methods and in an Optical Digital Tomographic Microscopy (ODTM) configuration. The surface is probed with illuminations under several incidence angles; the measure of far scattered field amplitude and phase constitutes the problem data. Surface profiles have been reconstructed using different scattering models among which an approximate theory based on single scattering and paraxiality. The lateral resolution of this technique and classical profilometric approaches is limited by the so-called Abbe-Rayleigh's criterion defined out of the numerical aperture for illumination and field detection. In order to overpass this resolution limit, we have developed a regularized iterative Newton-Kantorovitch's method. The scattering operator is rigorously modelized with the method of moments, that is a numerical solution of boundary integral equations, and its Fréchet derivative adjoint states expression is deduced from the reciprocity theorem. For one-dimensional metallic surfaces, our method succeeds in inverting from synthetic data very rough surfaces with the resolutions beyond the Abbe-Rayleigh's criterion. The performance of this technique and inversion conditions clearly differ from one polarization to the other : in the TM case, interactions at longer distance than in the TE case improve yet the resolution. This work includes also an experimental validation of our inverse model on grooves in indium phosphure substrate at 633 nm.
7

Simulation numérique de la solidification avec réduction de modèle PGD appliquée à la fonderie / Numerical simulation of solidification with reduced model order PGD applied foundry

Despret, Pierre 08 October 2015 (has links)
La thèse CIFRE s'est déroulée dans un contexte de métallurgie industrielle et de simulation numérique. La modélisation de la solidification, via l'équation de la chaleur et avec des méthodes de réduction de modèle, était un objectif majeur. L'entreprise Montupet, spécialisée dans la fonderie d'aluminium, est le porteur du projet et financeur de la thèse. L'université de Technologie de Compiègne (UTC) a réalisé l'accompagnement académique. La méthode PGD “Proper General Decomposition”, basée sur une séparation de variables, est l'objet de nombreuses recherches. Nous avons proposé, concernant des propriétés matériaux non-linéaires, une discrétisation spatio-temporelle des matrices matériaux. Avec une formulation en température, sans chaleur latente, les gains sont élevés. L'introduction de la chaleur latente réduit fortement les gains. Nous formulons l'hypothèse que la difficulté de convergence de la méthode PGD dans le cas de la solidification repose sur une formulation en température inadaptée. Nous décidons d'opter une formulation en enthalpie. Il s'avère que cette formulation offre des perspectives encourageantes, mais nécessite encore beaucoup de développements. En parallèle de ces développements, un séjour de 5 mois aux États-Unis a été réalisé afin d'obtenir une meilleure caractérisation de la fraction solide. La recherche s'est portée sur l'évolution de la fraction solide en fonction de la vitesse de refroidissement. Sous réserve de mesures complémentaires, les essais ont mis en évidence une modification de la courbe de fraction solide en fonction de la vitesse de refroidissement, notamment un agrandissement de l'intervalle de solidification. / The PhD Thesis was carried out in a metallurgy and numerical simulation environment. The main topic was to model solidification, thought heat equation formulation and reduced order model PGD resolution. Montupet, specialized in aluminium alloys foundry hold and financed the project, the Université de Technologie de Compiègne did the acadernic supervising. The PGD method "Proper General Decomposition" is a hot topic based on variable separation. We proposed, regarding the non-linear materials, a space-time discretization of material matrix. With a temperature formulation, without latent heat, gains are high. With latent heat, gains fall drastically. We proposed the hypothesis that temperature could be an inadapted formulation. We decided to use the enthalpy formulation. This formulation offers good perspectives but needs more developments. During the thesis, five months were spent in the USA to get a better caracterisation of the solid fraction, particularly its variation in function of the cooling rate. Under reservation, the samples show a modification of solid fraction curves and particularly a change of solidification interval in function of cooling rate.
8

Second-order derivatives for shape optimization with a level-set method / Dérivées secondes pour l'optimisation de formes par la méthode des lignes de niveaux

Vie, Jean-Léopold 16 December 2016 (has links)
Le but de cette thèse est de définir une méthode d'optimisation de formes qui conjugue l'utilisation de la dérivée seconde de forme et la méthode des lignes de niveaux pour la représentation d'une forme.On considèrera d'abord deux cas plus simples : un cas d'optimisation paramétrique et un cas d'optimisation discrète.Ce travail est divisé en quatre parties.La première contient le matériel nécessaire à la compréhension de l'ensemble de la thèse.Le premier chapitre rappelle des résultats généraux d'optimisation, et notamment le fait que les méthodes d'ordre deux ont une convergence quadratique sous certaines hypothèses.Le deuxième chapitre répertorie différentes modélisations pour l'optimisation de formes, et le troisième se concentre sur l'optimisation paramétrique puis l'optimisation géométrique.Les quatrième et cinquième chapitres introduisent respectivement la méthode des lignes de niveaux (level-set) et la méthode des éléments-finis.La deuxième partie commence par les chapitres 6 et 7 qui détaillent des calculs de dérivée seconde dans le cas de l'optimisation paramétrique puis géométrique.Ces chapitres précisent aussi la structure et certaines propriétés de la dérivée seconde de forme.Le huitième chapitre traite du cas de l'optimisation discrète.Dans le neuvième chapitre on introduit différentes méthodes pour un calcul approché de la dérivée seconde, puis on définit un algorithme de second ordre dans un cadre général.Cela donne la possibilité de faire quelques premières simulations numériques dans le cas de l'optimisation paramétrique (Chapitre 6) et dans le cas de l'optimisation discrète (Chapitre 7).La troisième partie est consacrée à l'optimisation géométrique.Le dixième chapitre définit une nouvelle notion de dérivée de forme qui prend en compte le fait que l'évolution des formes par la méthode des lignes de niveaux, grâce à la résolution d'une équation eikonale, se fait toujours selon la normale.Cela permet de définir aussi une méthode d'ordre deux pour l'optimisation.Le onzième chapitre détaille l'approximation d'intégrales de surface et le douzième chapitre est consacré à des exemples numériques.La dernière partie concerne l'analyse numérique d'algorithmes d'optimisation de formes par la méthode des lignes de niveaux.Le Chapitre 13 détaille la version discrète d'un algorithme d'optimisation de formes.Le Chapitre 14 analyse les schémas numériques relatifs à la méthodes des lignes de niveaux.Enfin le dernier chapitre fait l'analyse numérique complète d'un exemple d'optimisation de formes en dimension un, avec une étude des vitesses de convergence / The main purpose of this thesis is the definition of a shape optimization method which combines second-order differentiationwith the representation of a shape by a level-set function. A second-order method is first designed for simple shape optimization problems : a thickness parametrization and a discrete optimization problem. This work is divided in four parts.The first one is bibliographical and contains different necessary backgrounds for the rest of the work. Chapter 1 presents the classical results for general optimization and notably the quadratic rate of convergence of second-order methods in well-suited cases. Chapter 2 is a review of the different modelings for shape optimization while Chapter 3 details two particular modelings : the thickness parametrization and the geometric modeling. The level-set method is presented in Chapter 4 and Chapter 5 recalls the basics of the finite element method.The second part opens with Chapter 6 and Chapter 7 which detail the calculation of second-order derivatives for the thickness parametrization and the geometric shape modeling. These chapters also focus on the particular structures of the second-order derivative. Then Chapter 8 is concerned with the computation of discrete derivatives for shape optimization. Finally Chapter 9 deals with different methods for approximating a second-order derivative and the definition of a second-order algorithm in a general modeling. It is also the occasion to make a few numerical experiments for the thickness (defined in Chapter 6) and the discrete (defined in Chapter 8) modelings.Then, the third part is devoted to the geometric modeling for shape optimization. It starts with the definition of a new framework for shape differentiation in Chapter 10 and a resulting second-order method. This new framework for shape derivatives deals with normal evolutions of a shape given by an eikonal equation like in the level-set method. Chapter 11 is dedicated to the numerical computation of shape derivatives and Chapter 12 contains different numerical experiments.Finally the last part of this work is about the numerical analysis of shape optimization algorithms based on the level-set method. Chapter 13 is concerned with a complete discretization of a shape optimization algorithm. Chapter 14 then analyses the numerical schemes for the level-set method, and the numerical error they may introduce. Finally Chapter 15 details completely a one-dimensional shape optimization example, with an error analysis on the rates of convergence
9

Computation of invariant pairs and matrix solvents / Calcul de paires invariantes et solvants matriciels

Segura ugalde, Esteban 01 July 2015 (has links)
Cette thèse porte sur certains aspects symboliques-numériques du problème des paires invariantes pour les polynômes de matrices. Les paires invariantes généralisent la définition de valeur propre / vecteur propre et correspondent à la notion de sous-espaces invariants pour le cas nonlinéaire. Elles trouvent leurs applications dans le calcul numérique de plusieurs valeurs propres d’un polynôme de matrices; elles présentent aussi un intérêt dans le contexte des systèmes différentiels. En utilisant une approche basée sur les intégrales de contour, nous déterminons des expressions du nombre de conditionnement et de l’erreur rétrograde pour le problème du calcul des paires invariantes. Ensuite, nous adaptons la méthode des moments de Sakurai-Sugiura au calcul des paires invariantes et nous étudions le comportement de la version scalaire et par blocs de la méthode en présence de valeurs propres multiples. Le résultats obtenus à l’aide des approches directes peuvent éventuellement être améliorés numériquement grâce à une méthode itérative: nous proposons ici une comparaison de deux variantes de la méthode de Newton appliquée aux paires invariantes. Le problème des solvants de matrices est très proche de celui des paires invariants. Le résultats présentés ci-dessus sont donc appliqués au cas des solvants pour obtenir des expressions du nombre de conditionnement et de l’erreur, et un algorithme de calcul basé sur la méthode des moments. De plus, nous étudions le lien entre le problème des solvants et la transformation des polynômes de matrices en forme triangulaire. / In this thesis, we study some symbolic-numeric aspects of the invariant pair problem for matrix polynomials. Invariant pairs extend the notion of eigenvalue-eigenvector pairs, providing a counterpart of invariant subspaces for the nonlinear case. They have applications in the numeric computation of several eigenvalues of a matrix polynomial; they also present an interest in the context of differential systems. Here, a contour integral formulation is applied to compute condition numbers and backward errors for invariant pairs. We then adapt the Sakurai-Sugiura moment method to the computation of invariant pairs, including some classes of problems that have multiple eigenvalues, and we analyze the behavior of the scalar and block versions of the method in presence of different multiplicity patterns. Results obtained via direct approaches may need to be refined numerically using an iterative method: here we study and compare two variants of Newton’s method applied to the invariant pair problem. The matrix solvent problem is closely related to invariant pairs. Therefore, we specialize our results on invariant pairs to the case of matrix solvents, thus obtaining formulations for the condition number and backward errors, and a moment-based computational approach. Furthermore, we investigate the relation between the matrix solvent problem and the triangularization of matrix polynomials.
10

Méthode de Newton régularisée pour les inclusions monotones structurées : étude des dynamiques et algorithmes associés / Newton-Like methods for structured monotone inclusions : study of the associated dynamics and algorithms

Abbas, Boushra 20 November 2015 (has links)
Cette thèse est consacrée à la recherche des zéros d'un opérateur maximal monotone structuré, à l'aide de systèmes dynamiques dissipatifs continus et discrets. Les solutions sont obtenues comme limites des trajectoires lorsque le temps t tend vers l'infini. On s'intéressera principalement aux dynamiques obtenues par régularisation de type Levenberg-Marquardt de la méthode de Newton. On décrira aussi les approches basées sur des dynamiques voisines.Dans un cadre Hilbertien, on s'intéresse à la recherche des zéros de l'opérateur maximal monotone structuré M = A + B, où A est un opérateur maximal monotone général et B est un opérateur monotone Lipschitzien. Nous introduisons des dynamiques continues et discrètes de type Newton régularisé faisant intervenir d'une façon séparée les résolvantes de l'opérateur A (implicites), et des évaluations de B (explicites). A l'aide de la représentation de Minty de l'opérateur A comme une variété Lipschitzienne, nous reformulons ces dynamiques sous une forme relevant du théorème de Cauchy-Lipschitz. Nous nous intéressons au cas particulier où A est le sous différentiel d'une fonction convexe, semi-continue inférieurement, et propre, et B est le gradient d'une fonction convexe, différentiable. Nous étudions le comportement asymptotique des trajectoires. Lorsque le terme de régularisation ne tend pas trop vite vers zéro, et en s'appuyant sur une analyse asymptotique de type Lyapunov, nous montrons la convergence des trajectoires. Par ailleurs, nous montrons la dépendance Lipschitzienne des trajectoires par rapport au terme de régularisation.Puis nous élargissons notre étude en considérant différentes classes de systèmes dynamiques visant à résoudre les inclusions monotones gouvernées par un opérateur maximal monotone structuré M = $partialPhi$+ B, où $partialPhi$ désigne le sous différentiel d'une fonction convexe, semicontinue inférieurement, et propre, et B est un opérateur monotone cocoercif. En s'appuyant sur une analyse asymptotique de type Lyapunov, nous étudions le comportement asymptotique des trajectoires de ces systèmes. La discrétisation temporelle de ces dynamiques fournit desalgorithmes forward-backward (certains nouveaux ).Finalement, nous nous intéressons à l'étude du comportement asymptotique des trajectoires de systèmes dynamiques de type Newton régularisé, dans lesquels on introduit un terme supplémentaire de viscosité évanescente de type Tikhonov. On obtient ainsi la sélection asymptotique d'une solution de norme minimale. / This thesis is devoted to finding zeroes of structured maximal monotone operators, by using discrete and continuous dissipative dynamical systems. The solutions are obtained as the limits of trajectories when the time t tends towards infinity.We pay special attention to the dynamics that are obtained by Levenberg-Marquardt regularization of Newton's method. We also revisit the approaches based on some related dynamical systems.In a Hilbert framework, we are interested in finding zeroes of a structured maximal monotone operator M = A + B, where A is a general maximal monotone operator, and B is monotone and locally Lipschitz continuous. We introduce discrete and continuous dynamical systems which are linked to Newton's method. They involve separately B and the resolvents of A, and are designed to splitting methods. Based on the Minty representation of A as a Lipschitz manifold, we show that these dynamics can be formulated as differential systems, which are relevant to the Cauchy-Lipschitz theorem. We focus on the particular case where A is the subdifferential of a convex lower semicontinuous proper function, and B is the gradient of a convex, continuously differentiable function. We study the asymptotic behavior of trajectories. When the regularization parameter does not tend to zero too rapidly, and by using Lyapunov asymptotic analysis, we show the convergence of trajectories. Besides, we show the Lipschitz continuous dependence of the solution with respect to the regularization term.Then we extend our study by considering various classes of dynamical systems which aim at solving inclusions governed by structured monotone operators M = $partialPhi$+ B, where $partialPhi$ is the subdifferential of a convex lower semicontinuous function, and B is a monotone cocoercive operator. By a Lyapunov analysis, we show the convergence properties of the orbits of these systems. The time discretization of these dynamics gives various forward-backward splittingmethods (some new).Finally, we focus on the study of the asymptotic behavior of trajectories of the regularized Newton dynamics, in which we introduce an additional vanishing Tikhonov-like viscosity term.We thus obtain the asymptotic selection of the solution of minimal norm.

Page generated in 0.0894 seconds