Les systèmes embarqués mobiles font partis intégrante de notre quotidien. Afin de les rendre plus adaptésaux usages, ils ont été miniaturisés et leur autonomie a été augmentée, parfois de façon très considérable.Toutefois, les propositions d’amélioration butent désormais sur les possibilités de la technologie des circuitsintégrés. Pour aller plus loin, il faut donc envisager de repenser la chaîne de traitement du signal afin deréduire la consommation de ces dispositifs. Cette thèse développe une approche originale pour exploiterefficacement l’échantillonnage par traversée de niveaux d’une part et, d’autre part, associe cet échantillonnageà une logique évènementielle afin de réduire drastiquement la consommation d’énergie des systèmesintégrés autonomes. Une méthode de discrétisation adaptée à une application de reconnaissance de signauxphysiologiques, utilisée comme exemple dans cette thèse, y est présentée. Un premier prototype en logiqueévènementielle (asynchrone) sur circuit FPGA a permis de valider cette stratégie et de démontrer les bénéficesde cet échantillonnage dédié en termes de réduction de l’activité par rapport à un échantillonnage uniforme.Un second prototype en logique asynchrone et conçu en technologie CMOS AMS 0.35 μm a permis de validerpar simulation électrique un gain extrêmement important sur la consommation électrique du dispositif. / Our everyday life is highly dependent on mobile embedded systems. In order to make them suitable to differentapplications, they have underwent size reduction and lifetime extension. However, these improvementsare currently limited by the possibilities of the integrated circuits technologies. In order to push back theboundaries, it is necessary to reconsider the whole digital signal processing chain from scratch to sustain thepower consumption reduction in this kind of system. This work develops on the first hand a strategy thatsmartly uses the level-crossing sampling scheme and on the other combines this sampling method with eventlogicto highly reduce the power consumption in mobile embedded systems. A discretisation method adaptedto the recognition of physiological patterns application is described. A first event-logic (asynchronous) prototypeimplemented on FPGA proved the potential benefits that an adapted sampling scheme could offersto reduce activity compared to a uniform sampling scheme. Electrical simulations performed on a secondprototype, also designed in asynchronous logic, with CMOS AMS 0.35 μm technology, validated a high gainin power consumption.
Identifer | oai:union.ndltd.org:theses.fr/2015GREAT043 |
Date | 13 May 2015 |
Creators | Le Pelleter, Tugdual |
Contributors | Grenoble Alpes, Fesquet, Laurent, Bonvilain, Agnès |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0035 seconds