Les systèmes pédagogiques sont apparus récemment à propos des calculs propositionnels (jusqu'à l'ordre supérieur), et consistent à donner systématiquement des exemples des notions (hypothèses) introduites. Formellement, cela signifie que pour mettre un ensemble Delta de formules en hypothèse, il est requis de donner une substitution sigma telle que les instances de formules sigma(Delta) soient démontrables. Cette nécessité d'exemplification ayant été pointée du doigt par Poincaré (1913) comme relevant du bon sens: une définition d'un objet par postulat n'ayant d'intérêt que si un tel objet peut être construit. Cette restriction appliquée à des systèmes formels intuitionnistes rejoint l'idée des mathématiques sans négation défendues par Griss (1946) au milieu du siècle dernier, et présentées comme une version radicale de l'intuitionnisme. À travers l'isomorphisme de Curry-Howard (1980), la contrepartie calculatoire est l'utilité des programmes définis dans les systèmes fonctionnels correspondant: toute fonction peut être appliquée à un argument clos. Les premiers résultats concernant les calculs propositionnels jusqu'au second ordre ont été publiés récemment par Colson et Michel (2007, 2008, 2009). Nous exposons dans ce rapport une tentative d'uniformisation et d'extension au Calcul des Constructions (CC) des précédents résultats. Tout d'abord une définition formelle et précise de sous-système pédagogique du Calcul des Constructions est introduite, puis différents tels sous-systèmes sont déclinés en exemple / Pedagogical formal systems have appeared recently for propositional calculus (up to the higher order), and it consists of systematically give examples of introduced notions (hypotheses). Formally, it means that to use a set Delta of formulas as hypotheses, one must first give a substitution sigma such that all the instances of formulas sigma(Delta) can be proved. This neccesity of giving examples has been pointed out by Poincaré (1913) as a common-sense practice: a definition of an object by means of assumptions has interest only if such an object can be constructed. This restriction applied to intuitionistic formal systems is consistent with the idea of negationless mathematics advocated by Griss (1946) in the middle of the past century, and shown as a more radical view of intuitionism. Through the Curry-Howard isomorphism (1980), the computational counterpart is the utility of programs defined in the associated functional systems: every function can be applied to a closed value. First results concerning propositional calculi up to the second-order has recently been published by Colson and Michel (2007, 2008, 2009). In this thesis we present an attempt to standardize and to extend to the Calculus of Constructions (CC) those previous results. First a formal and precise definition of pedagogical sub-systems of the Calculus of Constructions is introduced, and different such sub-systems are exhibited as examples
Identifer | oai:union.ndltd.org:theses.fr/2012LORR0388 |
Date | 07 December 2012 |
Creators | Demange, Vincent |
Contributors | Université de Lorraine, Colson, Loïc, Stratulat, Sorin |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds