Tuned mass dampers (TMDs) are auxiliary damping devices installed within tall structures to reduce undesirable wind-induced vibrations and to enhance the overall system damping and hence, the dissipative capacity. The design of TMDs involves the selection of optimal auxiliary mass, frequency, and damping, based on the main structure's mass, natural frequency and damping properties. TMDs are inherently susceptible to detuning, where the auxiliary parameters are no longer optimal due to deterioration or changes within the system, resulting in a degradation in their performance. In order to correct for this detuning, it is necessary to perform a condition assessment while the TMDs are in service. The main goal of this thesis is to present a methodology to conduct condition assessment while the TMDs are in service. The proposed methodology does not involve either restraining the TMD or providing controlled external excitation to the structure, and relies on ambient measurements only. The first phase in the condition assessment is to estimate the bare structure's modal properties using acceleration measurements obtained from the structure while the TMDs are unrestrained. The present work accomplishes this goal within the framework of parametric identification using Kalman filtering, where the unknown parameters (bare modal properties) are appended to the state vector and estimated. Unlike most of the literature on this subject, the noise statistics for the filter are not assumed to be known a priori. They are estimated from the measurements and incorporated into the filter equations. This filter involves direct feedthrough of the process noise in the measurement equation and the appropriate filter is derived and used following the noise covariance estimation step. In the next phase, criteria to assess the condition of the TMD are developed. They include optimal tuning parameters established using simulated experiments and measured equivalent viscous damping. The research considered pendulum tuned mass dampers (PTMDs), which presently account for a large fraction of full-scale applications. Results were demonstrated using numerical investigations, a bench-scale model equipped with an adaptive mechanism for adjusting auxiliary damper parameters, and a full-scale PTMD-equipped structure. The main contributions of this thesis are: (a) a broader understanding of the coupled biaxial behaviour of PTMDs has been developed; (b) a systematic procedure for estimating the underlying modal characteristics of the structure from ambient vibration measurements within the framework of Kalman filtering has been achieved; (c) a comprehensive framework to undertake condition assessment of TMDs has been presented, integrating parametric identification from measured response data and performance prediction for design period wind events using boundary layer wind tunnel studies. The work provided new insight into the design and behaviour of PTMDs and presented a comprehensive approach to quantify their performance. The Kalman filtering framework also provides an efficient platform to build adaptive passive tuned mass dampers that can be tuned in place and adjusted to correct for detuning and accommodate various operating conditions.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/7083 |
Date | January 2012 |
Creators | Roffel, Aaron J. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0028 seconds