The microservice architecture is widely considered to be best practice. Yet, there still exist many companies currently working in monolith systems. This can largely be attributed to the difficult process of updating a systems architecture. The first step in this process is to identify microservices within a monolith. Here, artificial intelligence could be a useful tool for automating the process of microservice identification. The aim of this thesis was to propose a deep learning-based model for the task of microservice identification, and to compare this model to previously proposed approaches. With the goal of helping companies in their endeavour to move towards a microservice-based architecture. In particular, the thesis has evaluated whether the more complex nature of newer deep learning-based techniques can be utilized in order to identify better microservices. The model proposed by this thesis is based on overlapping community detection, where each identified community is considered a microservice candidate. The model was evaluated by looking at cohesion, modularity, and size. Results indicate that the proposed deep learning-based model performs similarly to other state-of-the-art approaches for the task of microservice identification. The results suggest that deep learning indeed helps in finding nontrivial relations within communities, which overall increases the quality of identified microservices, From this it can be concluded that deep learning is a promising technique for the task of microservice identification, and that further research is warranted. / Allmänt anses mikrotjänstarkitekturen vara bästa praxis. Trots det finns det många företag som fortfarande arbetar i monolitiska system. Detta då det finns många svårigheter runt processesen av att byta systemaritekture. Första steget i denna process är att identifiera mikrotjänster inom en monolit. Här kan artificiell intelligens vara ett användbart verktyg för att automatisera processen runt att identifiera mikrotjänster. Denna avhandling syftar till att föreslå en djupinlärningsbaserad modell för att identifiera mikrotjänster och att jämföra denna modell med tidigare föreslagna modeller. Målet är att hjälpa företag att övergå till en mikrotjänstbaserad arkitektur. Avhandlingen kommer att utvärdera nyare djupinlärningsbaserade tekniker för att se ifall deras mer komplexa struktur kan användas för att identifiera bättre mikrotjänster. Modellen som föreslås är baserad på överlappande klusterdetektion, där varje identifierad kluster betraktas som en mikrotjänstkandidat. Modellen utvärderades genom att titta på sammanhållning, modularitet och storlek. Resultaten indikerar att den föreslagna djupinlärningsbaserade modellen identifierar mikrotjänster av liknande kvalitet som andra state-of-the-art-metoder. Resultaten tyder på att djupinlärning bidrar till att hitta icke triviala relationer inom kluster, vilket ökar kvaliteten av de identifierade mikrotjänsterna. På grund av detta dras slutsatsen att djupinlärning är en lovande teknik för identifiering av mikrotjänster och att ytterligare forskning bör utföras.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-329348 |
Date | January 2023 |
Creators | Bothin, Anton |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:254 |
Page generated in 0.0521 seconds