Le cône diamant a été introduit par N. J. Wildberger pour l'algèbre de Lie sl(n;R). C'est une présentation combinatoire d'une base de l'espace C[N] des fonctions polynomiales sur le facteur nilpotent N de la décompositon d'Iwasawa de SL(n;R), qui respecte la stratification naturelle de ce N-module indécomposable. Cette approche combinatoire peut se réaliser à l'aide de tableaux de Young, qui indexent une telle base. On réalise l'algèbre C[N] comme un quotient, appelé algèbre de forme réduite, de l'algèbre de forme S_ de SL(n;R), on en déduit une base indexée par des tableaux de Young semi standards particuliers, dits tableaux quasi standards. Dans cette thèse cette construction est étendue aux cas des algèbres semi simples de rang 2, puis des algèbres sp(2n), enfin aux super algèbres de Lie sl(m; 1). Dans chaque cas, on définit les tableaux quasi standards, et on montre qu'ils forment une bonne base de l'algèbre de forme réduite, soit directement, soit en utilisant une variante du jeu de taquin de Schützenberger.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00682548 |
Date | 18 February 2010 |
Creators | Khlifi, Olfa |
Publisher | Université de Bourgogne |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds